

SIM7080G Hardware Design

LPWA Module

SIMCom Wireless Solutions Limited

SIMCom Headquarters Building, Building 3, No. 289 Linhong Road, Changning District, Shanghai P.R. China Tel: 86-21-31575100 support@simcom.com www.simcom.com

Document Title:	SIM7080G Hardware Design	
Version:	V1.05	
Date:	2023-06-14	
Status:	Released	

GENERAL NOTES

SIMCOM OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS, TO SUPPORT APPLICATION AND ENGINEERING EFFORTS THAT USE THE PRODUCTS DESIGNED BY SIMCOM. THE INFORMATION PROVIDED IS BASED UPON REQUIREMENTS SPECIFICALLY PROVIDED TO SIMCOM BY THE CUSTOMERS. SIMCOM HAS NOT UNDERTAKEN ANY INDEPENDENT SEARCH FOR ADDITIONAL RELEVANT INFORMATION, INCLUDING ANY INFORMATION THAT MAY BE IN THE CUSTOMER'S POSSESSION. FURTHERMORE, SYSTEM VALIDATION OF THIS PRODUCT DESIGNED BY SIMCOM WITHIN A LARGER ELECTRONIC SYSTEM REMAINS THE RESPONSIBILITY OF THE CUSTOMER OR THE CUSTOMER'S SYSTEM INTEGRATOR. ALL SPECIFICATIONS SUPPLIED HEREIN ARE SUBJECT TO CHANGE.

COPYRIGHT

THIS DOCUMENT CONTAINS PROPRIETARY TECHNICAL INFORMATION WHICH IS THE PROPERTY OF SIMCOM WIRELESS SOLUTIONS LIMITED COPYING, TO OTHERS AND USING THIS DOCUMENT, ARE FORBIDDEN WITHOUT EXPRESS AUTHORITY BY SIMCOM. OFFENDERS ARE LIABLE TO THE PAYMENT OF INDEMNIFICATIONS. ALL RIGHTS RESERVED BY SIMCOM IN THE PROPRIETARY TECHNICAL INFORMATION \rightarrow INCLUDING BUT NOT LIMITED TO REGISTRATION GRANTING OF A PATENT, A UTILITY MODEL OR DESIGN. ALL SPECIFICATION SUPPLIED HEREIN ARE SUBJECT TO CHANGE WITHOUT NOTICE AT ANY TIME.

SIMCom Wireless Solutions Limited

SIMCom Headquarters Building, Building 3, No. 289 Linhong Road, Changning District, Shanghai P.R. China Tel: +86 21 31575100 Email: simcom@simcom.com

For more information, please visit:

https://www.simcom.com/download/list-863-en.html

For technical support, or to report documentation errors, please visit:

https://www.simcom.com/ask/ index-cn.html or email to: support@simcom.com

Copyright © 2023 SIMCom Wireless Solutions Limited All Rights Reserved.

Version History

Date	Version	Description of change	Author
2019-05-31	1.00	Original	Hongjun Tu Lijuan Yin
2019-08-28	1.01	Update GNSS Passive antenna circuit and Galileo Frequency. Update GRFC dedicated signals lines to control the antenna tuner.	Hongjun Tu Xianjing Zhao
2019-10-11	1.02	Update power consumption data.	Hongjun Tu Xianjing Zhao
2019-12-25	1.03	Update power consumption data. Update GNSS test data and CAT-M B66&85's sensitivity	Hongjun Tu Xianjing Zhao
2020-08-11	1.04	Update Document Format Update timing parameters Update data rate	Hongjun Tu Jack Ban
2023-06-14	1.05	 Add a new section, "1.1 Module Document Overview." Change "BOOT-CFG" in the document to "USB-BOOT" to match the hardware interface description. Add a new section, "3.5.2 SIM Card Wiring Precautions," to the SIM card interface. Correct the description of the I2C bus clock rate in section 3.7, and specify the resistor value in the "Special Attention" section. Update the recommended circuit diagram for LTE and GNSS in section 4, and provide a table for recommended TVS protection. Add a new section, "5.3.5 Enhanced Discontinuous Reception (e-DRX)" with an illustrative diagram. Update the data transmission value in Table 38 for the parameter "21dBm." Add new sections, "6.3 Storage Conditions" and "6.4 Baking." 	Yifan Sun meihao Li

Contents

Version History	3
Contents	4
Table Index	6
Figure Index	
1 Introduction	9
1.1 Documentation Overview	9
1.2 Product outline	10
1.3 Hardware Interface Overview	
1.4 Hardware Block Diagram	
1.5 Functional Overview	12
2 Package Information	
2.1 Pin Assignment Overview	
2.2 Pin Description	
2.3 Mechanical Information	
2.4 Footprint Recommendation	
3 Interface Application	
3.1 Power Supply	
3.1.1 Power Supply Design Guide	
3.1.2 Recommended Power Supply Circuit	
3.1.3 Voltage Monitor	
3.2 Power on/Power off Function	24
3.2.1 Power on	24
3.2.2 Power off	
3.3 UART Interface	27
3.3.1 UART Design Guide	
3.3.2 RI and DTR Behavior	
3.4 USB Interface	
3.4.1 USB reference design	
3.4.2 USB forced download interface	
3.5 SIM Interface	
3.5.1 SIM Application Guide	
3.5.2 Precautions for SIM Card Cable Routing	
3.6 PCM Interface	
3.6.1 PCM Timing	
3.6.2 PCM Application Guide	
3.7 I2C Interface	

3.8 SPI Interface	
3.9 Network status	
3.10 ADC Interface	40
3.11 LDO output	41
3.12 RFGRFC Interface	42
4 RF Specifications	
4.1 LTE RF Specifications	43
4.2 LTE Antenna Design Guide	47
4.3 GNSS	
4.3.1 GNSS Technical specification	
4.3.2 GNSS Application Guide	
4.4 RF traces note	
4.4.1 RF traces layout	
4.4.2 LTE ANT and other system ANT decoupling	52
4.4.3 LTE antenna recommendation	
5 Electrical Specifications	
5.1 Absolute Maximum Ratings	54
5.2 Operating Conditions	
5.3 Operating Mode	
5.3.1 Operating Mode Definition	
5.3.2 Sleep Mode	
5.3.3 Minimum functionality mode and Flight mode	
5.3.4 Power Saving Mode (PSM)	
5.3.5 Extended Mode DRX (e-DRX)	
5.4 Current consumption	59
5.5 ESD Notes	
6 SMT Production Guide	
6.1 Top and Bottom View of SIM7080G	63
6.2 Label Information	64
6.3 Storage Conditions	65
6.4 Baking	66
6.5 Typical SMT Reflow Profile	67
6.6 Stencil Foil Design Recommendation	69
7 Packaging	
7.1 Pallet package	70
8 Appendix	74
8.1 Reference Design	74
8.2 Design check list	75
8.3 Coding Schemes and Maximum Net Data Rates over Air Interface	76
8.4 Related Documents	77
8.5 Terms and Abbreviations	79
8.6 Safety Caution	81

Table Index

Table 1: SIM7080G Frequency Bands and air interface	
Table 2: General features	
Table 3: Pin definition	
Table 4: IO parameters definition	
Table 5: Pin Description	
Table 6: VBAT pins electronic characteristic	21
Table 7: Recommended TVS diode list	22
Table 8: Power on timing and electronic characteristic	
Table 9: Power off timing and electronic characteristic 2	
Table 10: UART electronic characteristic	29
Table 11: SIM electronic characteristic in 1.8V mode (SIM_VDD=1.8V)	33
Table 12: PCM format ······	35
Table 13: PCM timing parameters	
Table 14: NETLIGHT pin status	40
Table 15: ADC electronic characteristics	40
Table 16: Electronic characteristic	41
Table 17: LTE-NB1 Conducted transmission power	43
Table 18: LTE-M1 Conducted transmission power	43
Table 19: Maximum Power Reduction (MPR) for UE category CAT-NB1	44
Table 20: Maximum Power Reduction (MPR) for UE category CAT-M1	44
Table 21: Operating frequencies	
Table 22: E-UTRA operating bands	
Table 23: Conducted reception sensitivity	
Table 24: CAT-M1 Reference sensitivity (QPSK)	
Table 25: CAT-NB2 Reference sensitivity (QPSK)	46
Table 26: Trace Loss Recommended Value	47
Table 27: Recommended TVS	48
Table 28: Recommended TVS	50
Table 29: list of recommended antenna models:	53
Table 30: list of recommended antenna parameters:	53
Table 31: Absolute maximum ratings	54
Table 32: Recommended operating ratings	54
Table 33: 1.8V Digital I/O characteristics*	55
Table 34: Operating temperature	55
Table 35: Operating Mode Definition	
Table 36:: VBAT consumption (VBAT=3.8V)	59
Table 37: LTE Cat-M1 data transmission (10MHz) consumption	60
Table 38: LTE Cat-NB1/NB2 data transmission (15KHz single tone) consumption	61
Table 39: The ESD performance measurement table (Temperature: 25, Humidity: 45%.)	
Table 40: The description of label information 6	
Table 41: Moisture Sensitivity Level	65

Table 42: Baking Condition 66	6
Table 43: Welding furnace temperature parameter table 62	7
Table 44: Tray size 7	1
Table 45: Small Carton size 72	2
Table 46: Big Carton size 73	3
Table 47: Schematic Check List 7	5
Table 48: PCB Layout Check List 75	5
Table 49: Coding Schemes and Maximum Net Data Rates over Air Interface 76	6
Table 50: Related Documents 7	7
Table 51: Terms and Abbreviations 79	9
Table 52: Terms and Abbreviations 8	1

Figure Index

Figure 1: SIM7080G block diagram	11
Figure 2: Pin assignment overview	13
Figure 3: Dimensions (Unit: mm)	19
Figure 4: Footprint recommendation (Unit: mm)	20
Figure 5: Power supply application circuit	22
Figure 6: power supply reference circuit	23
Figure 7: Reference power on/off circuit	24
Figure 8: Power on timing sequence	25
Figure 9: Power off timing sequence	
Figure 10: UART full modem	
Figure 11: UART null modem	
Figure 12: Reference circuit of level shift	29
Figure 13: Reference circuit with Transistor	29
Figure 14: RI behaviour (SMS and URC report)	
Figure 15: USB reference circuit	
Figure 16: USB_BOOT reference circuit	
Figure 17: SIM interface reference circuit	
Figure 18: PCM_SYNC timing	
Figure 19: External code to module timing	
Figure 20: Module to external codec timing	
Figure 21: Audio codec reference circuit	
Figure 22: I2C reference circuit	
Figure 23: SPI master mode circuit	
Figure 24: SPI slave mode circuit	
Figure 25: NETLIGHT reference circuit	
Figure 26: Power on sequence of the VDD_EXT	
Figure 27: RFGRFC interface reference circuit	
Figure 28: Antenna matching circuit (MAIN_ANT)	
Figure 29: Active antenna circuit	
Figure 30: Passive antenna circuit (Default)	50
Figure 31: RF trace should be far away from other high speed signal lines	51
Figure 32: The distance between GND to the inner conductor of SMA	
Figure 33: e-DRX diagrammatic sketch	59
Figure 34: Top and bottom view of SIM7080G	63
Figure 35: Label information	64
Figure 36: Recommended furnace temperature profile for soldering	67
Figure 37: stencil recommendation (Unit: mm)	
Figure 38: packaging diagram	70
Figure 39: Tray drawing	71
Figure 40: Small carton drawing	72
Figure 41: Big carton drawing	73
Figure 42: Reference design	74

1 Introduction

This document describes the electronic specifications, RF specifications, interfaces, mechanical characteristics and testing results of SIMCom SIM7080G module. With the help of this document and other related software application notes/user guides, users can understand and use SIM7080G to design and develop applications quickly.

1.1 Documentation Overview

The documents listed in Table 1 primarily cover the module's technical information. To thoroughly understand the device and its application, it is necessary to study all relevant documents.

No.	Document Name	Comment
[1]	SIM7080G_Hardware_Design_V1.05	Mainly introducing interface functions, recommend circuit, PCB layout guideline, packaging and other hardware components, as well as the use of AT commands
[2]	SIM7080G&SIM800C_Compatible_Design_V1.01	
[3]	SIM7080G&SIM7020X_Compatible_Design_V1.00	Comparison document between
[4]	SIM7080G&SIM868E_Compatible_Design_V1.00	SIM7080G and other compatible products
[5]	SIM7080G&Y7080E_Compatible_Design_V1.00	products
[6]	SIM7080 Series_AT Command Manual_V1.02	AT Command Manual
[7]	SIM7080G-TE kit_User Guide_V1.01	SIM7080G TE User Guide design
[8]	SIM7080G Reference Design V1.01(190827)	SIM7080G Reference design

NOTE

The document versions in the table may be earlier versions, and the content may change at any time. Please contact SIMCom technical support personnel to obtain the latest version.

1.2 Product outline

The SIM7080G modules support LTE CAT-M1, LTE CAT-NB1/NB2.

The physical dimension of SIM7080G is 17.6mm×15.7mm×2.4 mm. And the physical dimension is compatible with the packaging of SIM868 and SIM7020G.

Table 2: SIM7080G Frequency Bands and air interface

Network Type	Band	SIM7080G	
	Category	M1	NB1/NB2
	LTE-FDD B1	✓	✓
	LTE-FDD B2	✓	✓
	LTE-FDD B3	✓	✓
	LTE-FDD B4	✓	✓
	LTE-FDD B5	1	✓
	LTE-FDD B8	✓	✓
	LTE-FDD B12	1	✓
	LTE-FDD B13	1	✓
LTE-FDD*	LTE-FDD B14	1	
HD-FDD	LTE-FDD B18	1	✓
	LTE-FDD B19	1	✓
	LTE-FDD B20	1	✓
	LTE-FDD B25	1	✓
	LTE-FDD B26	1	✓
	LTE-FDD B27	1	
	LTE-FDD B28	1	✓
	LTE-FDD B66	1	✓
	LTE-FDD B71		✓
	LTE-FDD B85	1	✓
	GPS		✓
GNSS	GLONASS		✓
01400	BeiDou		✓
	Galileo		✓

NOTE

Galileo is default closed in software. But users can open it via AT command "AT+CGNSMOD". For more information about these AT commands, please refer to Document [1].

1.3 Hardware Interface Overview

The interfaces are described in detail in the next chapters include:

- Power Supply
- USB2.0 Interface
- UART Interface
- SIM Interface
- ADC
- LDO Power Output
- PCM Interface
- I2C Interface
- SPI Interface
- **RFGRFC** Interface
- GPIOs
- Antenna Interface

1.4 Hardware Block Diagram

The block diagram of the SIM7080G module is shown in the figure below.

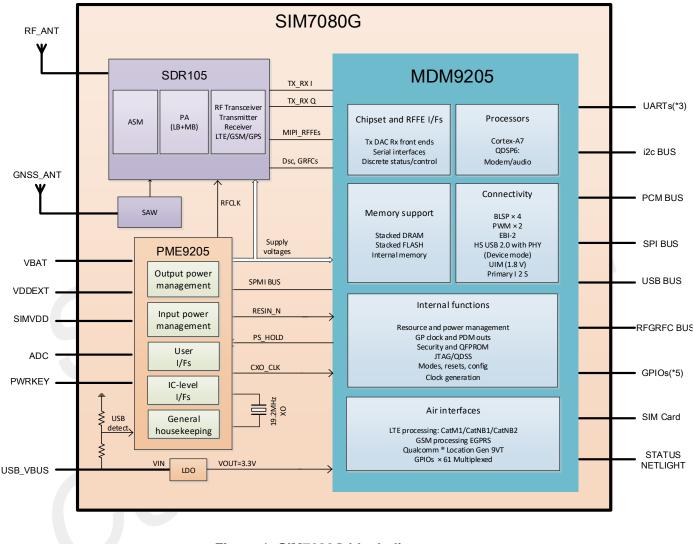
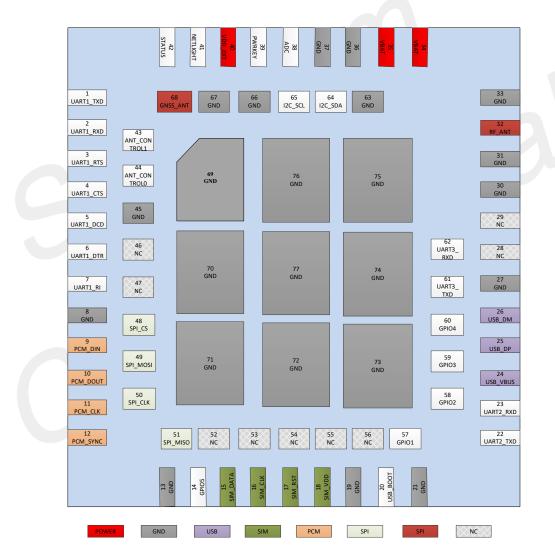


Figure 1: SIM7080G block diagram

1.5 Functional Overview


Table 3: General features

Feature	Implementation	
Power supply	Power supply voltage 2.7V~4.8V. Default :3.8V	
Power saving	Current in sleep mode: 1.2mA Current in PSM mode: 3uA	
Radio frequency bands	Please refer to the table 1	
Transmitting power	LTE power class: 5 (0.125W).	
Data Transmission Throughput	LTE CAT M1: 589 Kbps (DL), 1119 Kbps (UL) LTE CAT NB2: 136 Kbps (DL) ,150 Kbps (UL)	
Antenna	LTE main antenna. GNSS antenna.	
GNSS	GNSS engine (GPS, GLONASS, BD and Galileo). Protocol: NMEA.	
SIM interface Support identity card: 1.8V only.		
Digital audio feature	Support PCM interface. Only support PCM master mode and short frame sync	
SPI interface	Support for serial data bus SPI, only used during DAM application secondary development.	
UART interface	One channel full-function UART1 by default can be used for AT communication. Baud rate: 300bps to 3686400bps. Default rate is 0bps (auto baud rate). Support auto baud rate, but only limited to 9600, 19200, 38400, 57600 and 115200 bps. Support RTS/CTS hardware handshake. Two channel 2-wire UART2 and UART3 only used as UART in DAM application when secondary development.	
USB	USB 2.0 high speed interface.	
Firmware upgrade	Firmware upgrade over USB interface	
Physical characteristics	Size: $17.6 \times 15.7 \times 2.4$ mm Weight: 1.4 g ± 0.2 g	
Temperature range	operation temperature: -40°C ~ +85°C Storage temperature -45°C to + 90°C	

2 Package Information

2.1 Pin Assignment Overview

The module has 77 pins and provides all the hardware interfaces of the module.

Figure 2: Pin assignment overview

Table 4: Pin definition

Pin No	Pin Name	Pin No	Pin Name
1	UART1_TXD	2	UART1_RXD
3	UART1_RTS	4	UART1_CTS
5	UART1_DCD	6	UART1_DTR
7	UART1_RI	8	GND
9	PCM_DIN	10	PCM_DOUT
11	PCM_CLK	12	PCM_SYNC
13	GND	14	GPIO5
15	SIM_DATA	16	SIM_CLK
17	SIM_RST	18	SIM_VDD
19	GND	20	USB_BOOT*
21	GND	22	UART2_TXD
23	UART2_RXD	24	USB_VBUS
25	USB_DP	26	USB_DM
27	GND	28	NC
29	NC	30	GND
31	GND	32	RF_ANT
33	GND	34	VBAT
35	VBAT	36	GND
37	GND	38	ADC
39	PWRKEY	40	VDD_EXT
41	NETLIGHT	42	STATUS
43	ANT_CONTROL1	44	ANT_CONTROL0
45	GND	46	NC
47	NC	48	SPI_CS
49	SPI_MOSI*	50	SPI_CLK
51	SPI_MISO	52	NC
53	NC	54	NC
55	NC	56	NC
57	GPIO1	58	GPIO2
59	GPIO3	60	GPIO4
61	UART3_TXD	62	UART3_RXD
63	GND	64	I2C_SDA
65	I2C_SCL	66	GND
67	GND	68	GNSS_ANT
69	GND	70	GND
71	GND	72	GND
73	GND	74	GND

75	GND	76	GND
77	GND		

NOTE

Before the normal power up, USB_BOOT and SPI_MOSI cannot be pulled up.

2.2 Pin Description

Table 5: IO parameters definition

Pin type	Description
PI	Power input
PO	Power output
AI	Analog input
AIO	Analog input/output
I/O	Bidirectional input /output
DI	Digital input
DO	Digital output
DOH	Digital output with high level
DOL	Digital output with low level
PU	Pull up
PD	Pull down

Table 6: Pin Description

Pin name	Pin number	Default status	Description	Comment
VBAT	34,35	PI	Power supply, voltage range: 2.7V \sim 4.8V.	
VDD_EXT	40	PO	LDO power output 1.8V for other external circuits with Max 50mA current output.	This power supple only use for external GPIO pulling up or level shift circuit. If unused, keep it open.

GND	8, 13, 19, 21, 27, 30, 31, 33, 36, 37, 45, 63, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77		Ground	
System Control				
PWRKEY	39	DI,PU	System power on/off control input, active low. The efficient input low level must be below 0.4V. The efficient input high level must be higher than 1.0V. After the PWRKEY continues to pull down more than 12.6S.The system will automatically reset. Therefore, long-term grounding is not recommended	The level is 1.5V when this PIN is floating;
SIM interface				
			SIM Card data I/O, which has been	
SIM_DATA	15	I/O,PU	pulled up via a 20KR resistor to SIM_VDD internally. Do not pull it up or down externally.	All lines of SIM
SIM_DATA	15 17	I/O,PU DO	SIM_VDD internally. Do not pull it up	All lines of SIM interface should
		-	SIM_VDD internally. Do not pull it up or down externally.	interface should be protected
SIM_RST	17	DO	SIM_VDD internally. Do not pull it up or down externally. SIM Reset	interface should
SIM_RST SIM_CLK	17 16	DO DO	SIM_VDD internally. Do not pull it up or down externally. SIM Reset SIM clock Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up	interface should be protected
SIM_RST SIM_CLK SIM_VDD	17 16	DO DO	SIM_VDD internally. Do not pull it up or down externally. SIM Reset SIM clock Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up	interface should be protected against ESD.
SIM_RST SIM_CLK SIM_VDD	17 16 18	DO DO PO	SIM_VDD internally. Do not pull it up or down externally. SIM Reset SIM clock Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up to 50mA. Valid USB detection input with 3.5~5.25V detection voltage Positive line of the differential, bi-directional USB signal.	interface should be protected against ESD. Software download interface. It is recommended to reserve
SIM_RST SIM_CLK SIM_VDD USB* USB_VBUS	17 16 18 24	DO DO PO DI,PD	SIM_VDD internally. Do not pull it up or down externally. SIM Reset SIM clock Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up to 50mA. Valid USB detection input with 3.5~5.25V detection voltage Positive line of the differential,	interface should be protected against ESD. Software download interface. It is recommended
SIM_RST SIM_CLK SIM_VDD USB* USB_VBUS USB_DP	17 16 18 24 25	DO DO PO DI,PD I/O	SIM_VDD internally. Do not pull it up or down externally. SIM Reset SIM clock Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up to 50mA. Valid USB detection input with 3.5~5.25V detection voltage Positive line of the differential, bi-directional USB signal. Negative line of the differential,	interface should be protected against ESD. Software download interface. It is recommended to reserve interfaces or test
SIM_RST SIM_CLK SIM_VDD USB* USB_VBUS USB_DP USB_DM	17 16 18 24 25	DO DO PO DI,PD I/O	SIM_VDD internally. Do not pull it up or down externally. SIM Reset SIM clock Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up to 50mA. Valid USB detection input with 3.5~5.25V detection voltage Positive line of the differential, bi-directional USB signal. Negative line of the differential,	interface should be protected against ESD. Software download interface. It is recommended to reserve interfaces or test
SIM_RST SIM_CLK SIM_VDD USB* USB_VBUS USB_DP USB_DM UART interface	17 16 18 24 25 26	DO DO PO DI,PD I/O I/O	SIM_VDD internally. Do not pull it up or down externally. SIM Reset SIM clock Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up to 50mA. Valid USB detection input with 3.5~5.25V detection voltage Positive line of the differential, bi-directional USB signal. Negative line of the differential, bi-directional USB signal.	interface should be protected against ESD. Software download interface. It is recommended to reserve interfaces or test
SIM_RST SIM_CLK SIM_VDD USB* USB_VBUS USB_DP USB_DM UART interface UART1_TXD	17 16 18 24 25 26 1	DO DO DO PO DI,PD I/O I/O DOH	SIM_VDD internally. Do not pull it up or down externally. SIM Reset SIM clock Power output for SIM card, its output Voltage depends on SIM card type automatically. Its output current is up to 50mA. Valid USB detection input with 3.5~5.25V detection voltage Positive line of the differential, bi-directional USB signal. Negative line of the differential, bi-directional USB signal.	interface should be protected against ESD. Software download interface. It is recommended to reserve interfaces or test

UART1_DCD	5	DOH	Carrier detects		
UART1_DTR	6	DI,PU	DTE get ready		
UART1_RI	7	DOH	Ring Indicator		
UANTI_N	1	DOIT		Debug UART,	
UART2_TXD	22	DOH	The default function is GPIO, and UART is only used for software	the boot log will be output during boot up.	
UART2_RXD	23	DI,PU	secondary development. Cannot be used as AT communication port.	lf unused, keep them open.	
UART3_TXD	61	DOH	The default function is GPIO. It cannot be used as AT communication port. But it can be used for software secondary	lf unused, keep	
UART3_RXD	62	DI,PU	used for software secondary development. It can also be configured as NMEA data output for GNSS.	them open.	
I2C interface					
				lf unused, keep	
I2C_SDA	64	I/O	I2C data input/output	open, or else pull them up via	
I2C_SCL	65	DO	I2C clock output	1KΩ resistors to the VDD_EXT.	
PCM interface					
PCM_DIN	9	DI	PCM data input.	lfd	
PCM_DOUT	10	DO	PCM data output.	If unused,	
PCM_CLK	11	DO	PCM data bit clock.	please keep them open.	
PCM_SYNC	12	DO	PCM data frame sync signal.	them open.	
SPI interface					
SPI_CS	48	DO	Chip Select	lf unused,	
SPI_MOSI	49	DO	Main Controller DATA output. Note: This chip pin has fast boot function. It cannot be pulled up before booting. Otherwise it will affect the normal boot.	please keep them open. SPI_MOSI DO NOT PULL UP DURING	
SPI_CLK	50	DO	Bus clock output	NORMAL	
 SPI_MISO	51	DI	Main Controller DATA input	POWER UP!	
GPIO			·		
NETLIGHT	41	DO	LED control output as network status indication.		
STATUS	42	DO	Operating status output. High level: Power on and firmware ready	lf unused, keep	

GPIO1	57	IO	GPIO	
GPIO2	58	IO	GPIO	
GPIO3	59	IO	GPIO	
GPIO4	60	IO	GPIO	
GPIO5	34	IO	GPIO	
RF interface				
GNSS_ANT	68	AI	GNSS antenna soldering pad	
RF_ANT	32	AIO	MAIN antenna soldering pad	
RFGRFC interfa	се			
ANT_CONTROL1	43	Ю	GRFC dedicated signals lines VC2	It can be connected to external antenna tuner to enhance
ANT_CONTROL0	44	DO	GRFC dedicated signals lines VC1	antenna performance. If not used, it can be suspended.
Other interface				
USB_BOOT	20	DI,PD	If it needs to enter into forced USB download mode, it must be pulling up this pin to VDD_EXT before press the PWRKEY. If it needs to boot up normally, please keep this pin open.	Reserve a test points for it. Keep it open. DO NOT PULL UP DURING NORMAL POWER UP!
ADC	38	AI	Analog-digital converter input. voltage range: 0V~1.875V.	If unused, keep them open.
NC	28,29,46, 47,52,53, 54,55,56		No connection.	Keep it open

NOTE

Please reserve a test point for USB_BOOT and VDD_EXT. If there is no USB connector, please also reserve a test point for USB_VBUS, USB_DP, and USB_DM for Firmware upgrade.

2.3 Mechanical Information

The following figure shows the package outline drawing of SIM7080G.

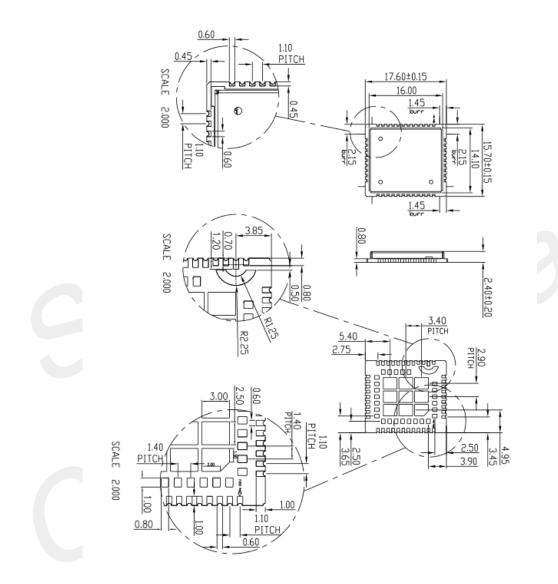


Figure 3: Dimensions (Unit: mm)

NOTE

Tolerance does not include burr-areas. To facilitate subsequent welding maintenance, it is recommended that the distance between the module and other components on the PCB be at least 3mm.

2.4 Footprint Recommendation

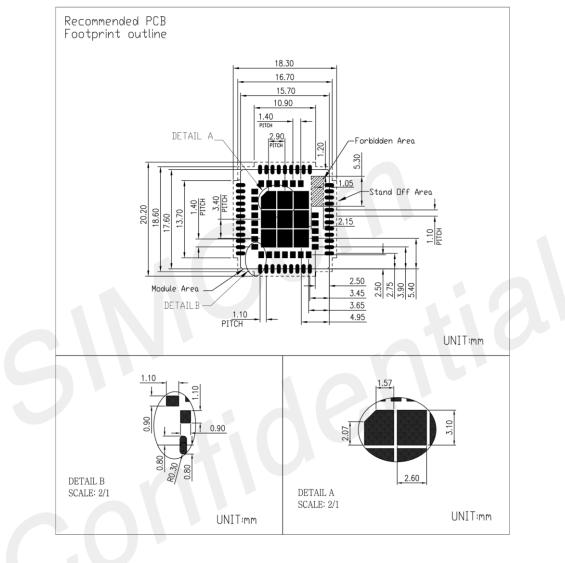


Figure 4: Footprint recommendation (Unit: mm)

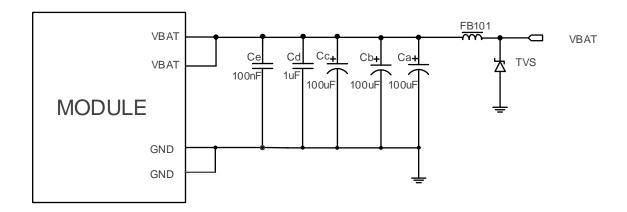
3 Interface Application

3.1 Power Supply

Pin 34 and pin 35 are VBAT power input.

On VBAT pads, when module works on CAT-M1 or NB-IoT mode, the ripple current is up to 0.5A typically. For steady voltage, the power supply capability must be up to 0.5A.

Table 7: VBAT pins electronic characteristic


Symbol	Description	Min	Тур	Max	Unit
VBAT	Module power voltage	2.7	3.8	4.8	V
VBAT(peak)	Module power peak current in CAT-M1 and NB-IoT emission mode.	-	0.5	-	А
VBAT(average)	Module power average current in normal mode	Please refer to the chapter			hapter
VBAT(sleep)	Power supply current in sleep mode	5.4			
IVBAT(power-of f)	Module power current in power off mode.	-	-	15	uA
VBAT(PSM)	Module power current in PSM mode.	-	3	-	uA

3.1.1 Power Supply Design Guide

In the user's design, special attention must be paid to the design of the power supply to ensure that the drop of VBAT is not less than 2.5V even when the module's current consumption reaches the instantaneous maximum. If the voltage drop is less than 2.5V, the module may shut down due to the low voltage.

The following figure shows the recommended circuit.

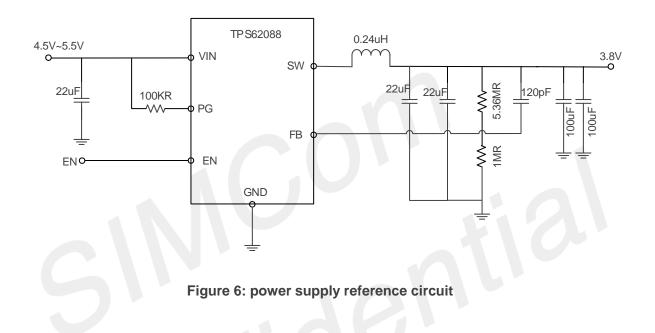
Figure 5: Power supply application circuit

In addition, for ESD protection, it is suggested to add a TVS diode near the VBAT PINs. These capacitors should be put as close as possible to VBAT pads. Also, users should keep VBAT trace on circuit board wider than 1 mm to minimize PCB trace impedance.

Table 8: Recommended TVS diode list

Table 8: Recommended TVS diode list				
No.	Manufacturer	Part Number	Package	
1	Prisemi	PESDHC2FD4V5B	DFN1006	
2	Prisemi	PESDHC3D3V3U	SOD323	
3	WILLsemi	ESD5651N-2/TR	DFN1006	

NOTE


1 The customer's circuit design must have the function that the master can control the power off of the module. The module can be shut down or restarted normally. Only when the module is abnormal and cannot be shut down or restarted normally can the power be turned off.

2. When the module is working normally, do not cut off the power supply of the module VBAT directly to avoid damage to the internal flash of the module. It is strongly recommended to turn off the module through PWRKEY or AT command before disconnecting the module VBAT power.

3.1.2 Recommended Power Supply Circuit

If the supply voltage exceeds the supply range of VBAT, the buck circuit should be used to meet the demand of power supply. When choosing buck chip, besides considering the maximum current output capability of IC to meet the demand of SIM7080G, it is also necessary to consider the low static power consumption of IC in PSM mode.

3.1.3 Voltage Monitor

To monitor the VBAT voltage, the AT command "AT+CBC" can be used.

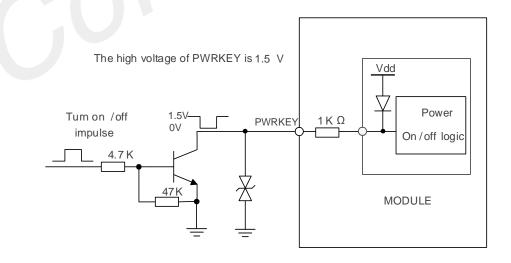
AT command "AT+CBATCHK=1" can be used to enable the overvoltage warning function and the under-voltage warning function. The default value of the overvoltage warning function in the software is 4.85V, and the default value of the under-voltage warning function is 2.8V. If the power supply for VBAT pins is up 4.85V or under 2.8V, module will be warning.

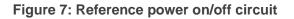
The AT command "AT+CBATCHK=1" also can be used to enable the overvoltage power-off function and the under-voltage power-off function. The default value of the overvoltage power-off function is 4.9V, and the default value of the under-voltage power-off function is 2.5V. If the VBAT voltage is up 4.9V or under 2.5V, module will be power off.

NOTE

Under-voltage warning function and under-voltage power-off function are disabled by default. For more information about these AT commands, please refer to Document [1].

3.2 Power on/Power off Function

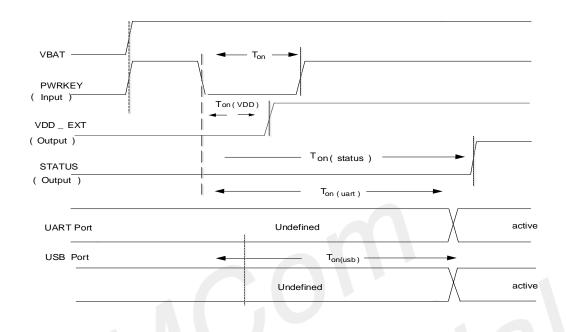

3.2.1 Power on


SIM7080G can be powered on by briefly pulling the PWRKEY pin to ground.

The PWRKEY pin has been pulled up with a diode to 1.8V internally, so it does not need to be pulled up externally. It is strongly recommended to put an ESD protection diode close to the PWRKEY pin, as it would strongly enhance the ESD performance of PWRKEY pin.

The PWRKEY pin has its own reset function. The reset time is determined by the internal timer (default is 12.6 seconds). After the PWRKEY is pulled low, the module will be reset after 12.6 seconds. Therefore, it is not recommended to connect PWRKEY to GND all the time in external circuit design.

Please refer to the following figure for the recommended reference circuit.



The power-on scenarios are illustrated in the following figure.

Figure 8: Power on timing sequence

Table 9: Power on timing and electronic characteristic

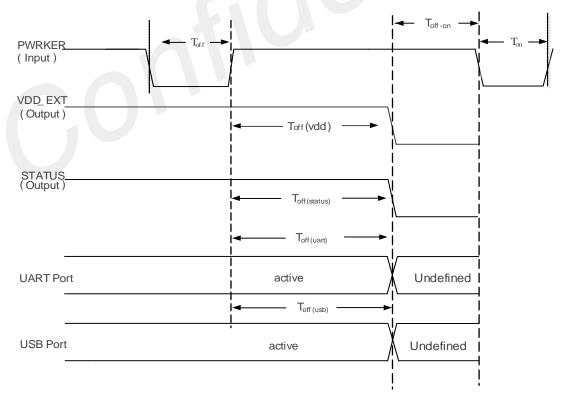
Symbol	Parameter	Min.	Тур.	Max.	Unit
Ton	The time of active low level impulse of PWRKEY pin to power on module	1	-	12.6	S
Ton(Vdd)	The time from power-on issue to VDD_EXT pin output high level.		64		ms
Ton(status)	The time from power-on issue to STATUS pin output high level(indicating power up ready)	1.8	-	-	S
Ton(uart)	The time from power-on issue to UART port ready	1.8	-	-	S
Ton(usb)	The time from power-on issue to USB port ready	1.8	-	-	S
VIH	Input high level voltage on PWRKEY pin	1.0	1.5	1.8	V
VIL	Input low level voltage on PWRKEY pin	-0.3	0	0.4	V

NOTE

- 1. PWRKEY cannot be shorted all the way to GND.
- 2. It is recommended to ensure that the VBAT voltage rises and stabilizes before pulling down the PWRKEY pin to start up.
- 3. Before turning on the module, be sure to pay attention to the maximum conditions (such as voltage and temperature range) allowed by the module, otherwise exceeding the absolute maximum value of the module may cause permanent damage to the module.

3.2.2 Power off

The following methods can be used to power off SIM7080G.


- Method 1: Power off SIM7080G by pulling the PWRKEY pin to ground.
- Method 2: Power off SIM7080G by AT command "AT+CPOWD=1".
- Method 3: over-voltage or under-voltage automatic power off. The function can be enabled by AT command "AT+CBATCHK=1". Default is disabled.

NOTE

- 1. For details about "AT+CPOWD" and "AT+CBATCHK", please refer to Document [1].
- 2. It is not recommended to turn off the module by disconnecting VBAT power. Otherwise, there is a risk of damage to the module file system.

These procedures will make modules disconnect from the network and allow the software to enter a safe state, and save data before module be powered off completely.

The power off scenario by pulling down the PWRKEY pin is illustrated in the following figure.

Table 10: Power off timing and electronic characteristic

Symbol	Parameter		Time value			
Symbol		Min	Тур.	Max	Unit	
Toff	The active low level time pulse on PWRKEY pin to power off module	1.2	-	-	s	
T _{off(vdd)}	The time from power-off issue to VDD_EXT pin output low level	1.8	-	-	s	
T _{off(status)}	The time from power-off issue to STATUS pin output low level(indicating power off)*	1.8	-	-	S	
Toff(uart)	The time from power-off issue to UART port off	1.8	-	-	S	
Toff(usb)	The time from power-off issue to USB port off	1.8	-	-	S	
Toff-on	The buffer time from power-off issue to power-on issue	2	-	-	S	

NOTE

The STATUS pin can be used to detect whether module is powered on or not. When module has been powered on and firmware goes ready, STATUS will be high level, or else STATUS will still low level.

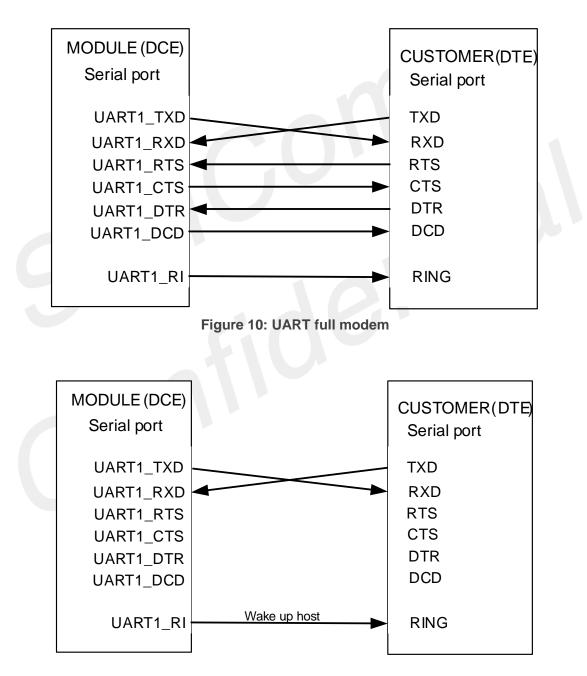
3.3 UART Interface

SIM7080G can provide 3 channels serial ports:

One channel full-function serial port UART1, it can be used for AT command communication between the module and the peripheral MCU.

One channel DEBUG serial port UART2, the boot log will be output from hear during the system boot-up. The default function after booting is GPIO. It can be configured as a UART function, but it cannot be used for AT command communication. It is only used as UART in DAM (Downloadable Application Module) application when secondary development.

One channel 2-wire serial port UART3, the default function after booting is GPIO. It can be configured as a UART function, but it cannot be used for AT command communication. It is only used as UART in DAM (Downloadable Application Module) application when secondary development. It can also be configured as a GNSS NMEA data output port.


When the UART port is used as the AT communication port, it supports high speed mode, the baud rate is up to 4Mbps. The communication baud rates include: 0, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 921600, 2000000, 3000000, 3200000 and 3686400 bps. The rate 0bps marks

auto baud rate. And it supports auto baud rate, but the rate only supported on 9600, 19200, 38400, 57600, 115200. If users need to change to other baud rate, it needs to switch via manual operation.

3.3.1 UART Design Guide

The following figures show the reference design.

Table 11: UART electronic characteristic

Symbol	Description	Min	Тур.	Max	Unit
VIH	UART input high level voltage	1.17	1.8	2.1	V
VIL	UART input low level voltage	-0.3	0	0.63	V
Vон	UART output high level voltage	1.35	1.8	1.8	V
Vol	UART output low level voltage	0	0	0.45	V

The SIM7080G UART is 1.8V voltage interface. If user's UART application circuit is 3.3V voltage interface, the level shifter circuits should be used for voltage matching. The following figure shows the voltage matching reference design.

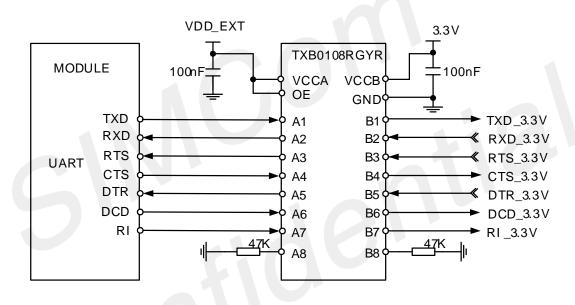


Figure 12: Reference circuit of level shift

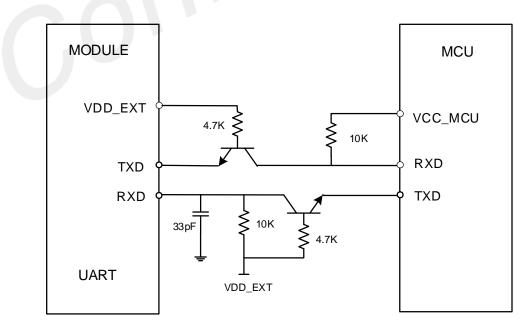
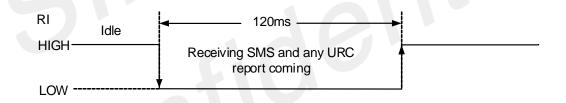


Figure 13: Reference circuit with Transistor

NOTE

1. When it uses the level shifter IC, the pull up resistance on TXD_3.3V, RTS_3.3V, DCD_3.3V and RI_3.3V should not be less than $47K\Omega$.


2. When it uses the transistor, the selection of the transistor must be a high-speed transistor, and the model MMBT3904 is recommended.

3.3.2 RI and DTR Behavior

The RI pin description:

The RI pin can be used to interrupt output signal to inform the host controller such as application CPU. Before that, users must use AT command "AT+CFGRI=1" to enable this function.

Normally RI will keep high level until certain conditions such as receiving SMS, or a URC report coming, then it will output a low level pulse 120ms, in the end, it will become high level.

The DTR pin description:

After setting the AT command "AT+CSCLK=1", and then pulling up the DTR pin, SIM7080G will enter sleep mode when module is in idle mode. In sleep mode, the UART is unavailable. When SIM7080G enters sleep mode, pulling down DTR can wake up module.

After setting the AT command "AT+CSCLK=0", SIM7080G will do nothing when the DTR pin is pulling up.

NOTE

For more details of AT commands about UART, please refer to document [1] and [20].

3.4 USB Interface

The USB2.0 interface of module can be used for software upgrade and software debugging.

USB_VBUS is the detecting signal for USB inserting. The input voltage range on the USB_VBUS pin is from 3.5V to 5.25V. If there is out of this range, it may be due to USB function unidentifiable, even damaging the module.

3.4.1 USB reference design

The reference circuit refers to the following figure.

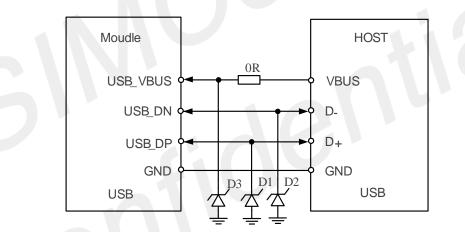


Figure 15: USB reference circuit

Because of the high speed on USB bus, more attention should be paid to the influence of the junction capacitance of the ESD component on USB data lines. Typically, the capacitance of the D1 and D2 should be less than 3pF.

D3 is suggested to select the diode with anti-ESD and voltage surge function, or customer could add a ZENER diode for surge clamping.

NOTE

Please reserve a test point for USB BOOT and VDD EXT. If there is no USB connector, please also reserve a test point for USB VBUS, USB DP, and USB DM for Firmware upgrade!
 The USB_DM and USB_DP nets must be traced by 90 Ohm+/-10% differential impedance.

3.4.2 USB forced download interface

Before power on, pull up the USB_BOOT pin to VDD_EXT power and then pull down PWRKEY, the module enters USB forced download mode.

This method can be used to upgrade the software version of the module when the module's software system is abnormal causing it to fail to power on.

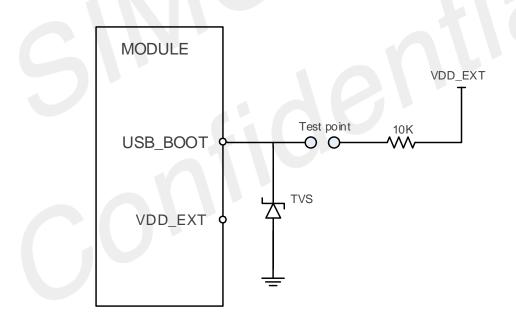


Figure 16: USB_BOOT reference circuit

3.5 SIM Interface

SIM7080G only supports 1.8V SIM Cards.

Table 12: SIM electronic characteristic in 1.8V mode (SIM_VDD=1.8V)

Symbol	Parameter	Min.	Тур.	Max.	Unit
SIM_VDD	LDO power output voltage	1.75	1.8	1.95	V
VIH	High-level input voltage	0.65*SIM_VDD	-	SIM_VDD +0.3	V
VIL	Low-level input voltage	-0.3	0	0.35*SIM_VDD	V
Vон	High-level output voltage	SIM_VDD -0.45	-	SIM_VDD	V
Vol	Low-level output voltage	0	0	0.45	V

NOTE

- 1. The module does not support 3V SIM card. The software does not support the SIM card hot swap function.
- 2. There is an eSIM card slot reserved inside the SIM7080G module. The specific supported protocols and card operations need to be provided by the card manufacturer.

3.5.1 SIM Application Guide

It is recommended to use an ESD protection component such as ESDA6V1W5 produced by ST (www.st.com) or SMF15C produced by ON SEMI (www.onsemi.com). Note that the SIM peripheral circuit should be close to the SIM card socket. The following figure shows the 6-pin SIM card holder reference circuit.

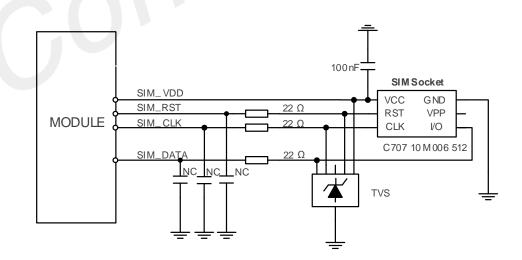


Figure 17: SIM interface reference circuit

SIM_DATA has been pulled up with a 20KΩ resistor to SIM_VDD in module, so it no need pulled up

resistor anymore.

SIM_VDD needs a 100nF capacitor close to SIM socket.

SIM_CLK is very important signal, the rise time and fall time of SIM_CLK should be less than 40ns. So the junction capacity of the TVS need to less 50pF.

3.5.2 Precautions for SIM Card Cable Routing

SIM card circuits are more susceptible to interference, causing unrecognized SIM cards or dropped cards, so please follow the following principles when designing:

• It is recommended to place a 100nF capacitor on the SIM_VDD signal line close to the SIM card holder

• Place a TVS close to the SIM card holder with a parasitic capacitance of no more than 15pF and a 22Ω resistor in series between the SIM card holder and the module to enhance ESD protection

- Always keep the SIM card holder away from the main antenna during PCB layout
- Keep the SIM card alignment as far away as possible from RF lines, VBAT and high-speed signal lines, and do not make the SIM card signal alignment too long
- SIM card signal line alignment to avoid line branching

• SIM card signals should be protected by GND in all directions, and it is best to protect SIM_CLK with a separate ground package.

3.6 PCM Interface

SIM7080G provides a PCM interface for external codec, which can be used in master mode with short sync and 16 bits linear format.

Table 13: PCM format

Characteristics	Specification
Line Interface Format	Linear(Fixed)
Data length	16bits(Fixed)
PCM Clock/Sync Source	Master Mode(Fixed)
PCM Clock Rate	2048 KHz (Fixed)
PCM Sync Format	Short sync(Fixed)
Data Ordering	MSB

NOTE

For more details about PCM AT commands, please refer to document [1].

3.6.1 PCM Timing

SIM7080G supports 2.048 MHz PCM data and sync timing for 16 bits linear format codec.

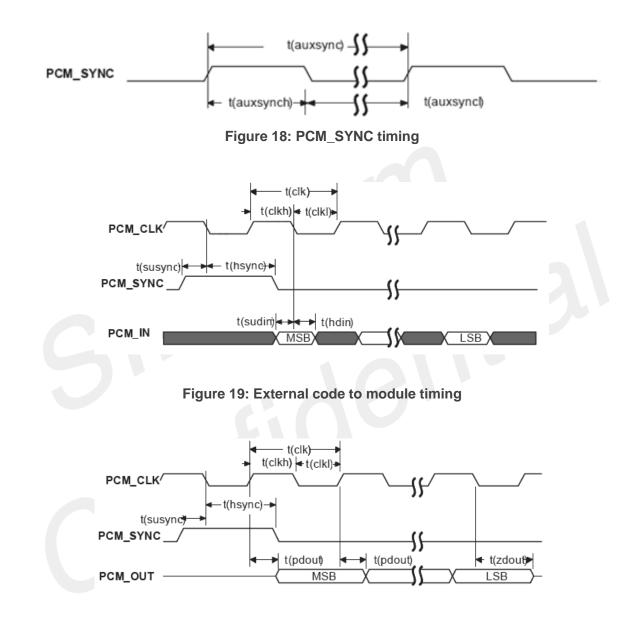
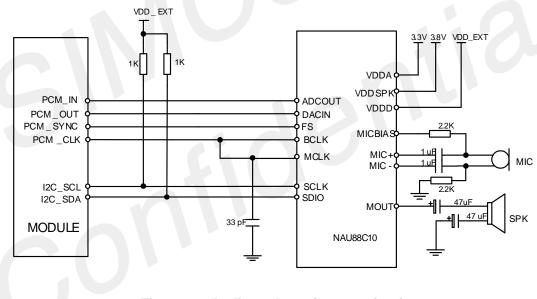


Figure 20: Module to external codec timing

Table 14: PCM timing parameters


Parameter	Description	Min.	Тур.	Max.	Unit
T(sync)	PCM_SYNC cycle time	_	125	—	μs
T(synch)	PCM_SYNC high level time	_	488	—	ns
T(syncl)	PCM_SYNC low level time	_	124.5	_	μs
T(clk)	PCM_CLK cycle time	_	488	_	ns
T(clkh)	PCM_CLK high level time	-	244	-	ns

T(clkl)	PCM_CLK low level time	—	244	_	ns
T(susync)	PCM_SYNC setup time high before falling edge of PCM_CLK	_	122	_	ns
T(hsync)	PCM_SYNC hold time after falling edge of PCM_CLK	_	366	_	ns
T(sudin)	PCM_IN setup time before falling edge of PCM_CLK	60	_	_	ns
T(hdin)	PCM_IN hold time after falling edge of PCM_CLK	60	—	_	ns
T(pdout)	Delay from PCM_CLK rising to PCM_OUT valid	_	_	60	ns
T(zdout)	Delay from PCM_CLK falling to PCM_OUT HIGH-Z	_	—	60	ns

3.6.2 PCM Application Guide

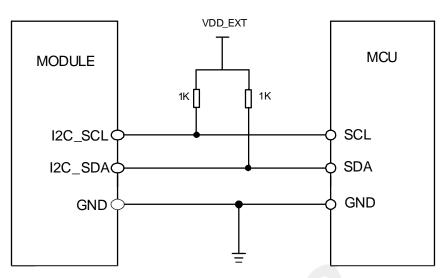
The following figure shows the external codec reference design.

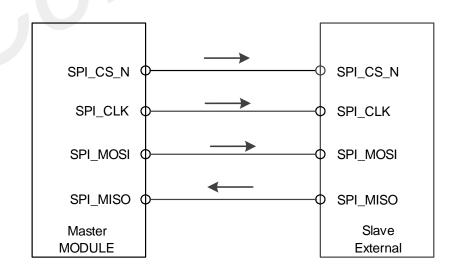
Figure 21: Audio codec reference circuit

3.7 I2C Interface

SIM7080G provides an I2C interface with clock rate up to 400 kbps. Its operation voltage is 1.8V.

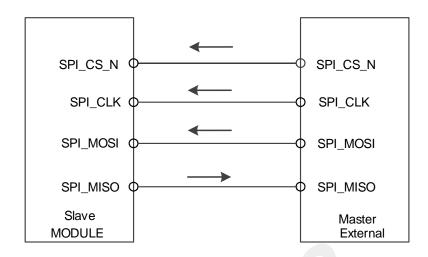
The following figure shows the I2C bus reference design.



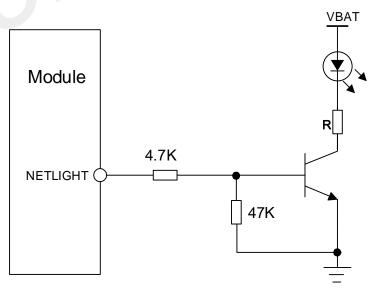

Figure 22: I2C reference circuit

The I2C signal has no pull-up resistors in module. So the pulling up resistors $1K\Omega$ to VDD_EXT is necessary in application circuit.

3.8 SPI Interface


SIM7080G supports a set of 4- wire (MISO, MOSI, CS and CLK) SPI interfaces and supports both SPI master mode and SPI slave mode. The maximum clock frequency is up to 50MHz when operating in SPI master mode and up to 25MHz when operating in SPI Slave mode. This feature is only used in DAM (Downloadable Application Module) application when secondary development.

The following figure shows the SPI bus reference design.



The SPI_MOSI (49 pin) function is FAST BOOT function before system boot-up, so the level on this pin cannot be high before the system boot-up, otherwise the module will not start normally.

3.9 Network status

The NETLIGHT pin is used to control Network Status LED, its reference circuit is shown in the following figure.

The value of the resistor named "R" depends on the LED characteristic.

Table 15: NETLIGHT pin status

NETLIGHT pin status	Module status
64ms ON, 800ms OFF	No registered network
64ms ON, 3000ms OFF	Registered network (PS domain registration success)
64ms ON, 300ms OFF	Data transmit (PPP dial-up state and use of data services such as internal TCP/FTP/HTTP)
OFF	Power off or PSM mode

NOTE

NETLIGHT output low level as "OFF" and high level as "ON".

3.10 ADC Interface

SIM7080G has a dedicated ADC pin. It is available for digitizing analog signals such as battery voltage and so on. Its input voltage range is from 0V to 1.8v. That is the maximum measurement range of ADC cannot exceed 1.8V. If the input voltage of ADC PIN exceeds its range, it is necessary to implement the resistance partial pressure on the hardware

The electronic specifications are shown in the following table.

Table 16: ADC electronic characteristics

Characteristics	Min.	Тур.	Max.	Unit
Input Range	0		1.875	V
Internal pull-up resistor		400		KΩ
Input serial resistance	1	_	_	MΩ

"AT+CADC" can be used to read the voltage of the ADC pin, for more details, please refer to document [1].

3.11 LDO output

SIM7080G has a LDO power output named VDD_EXT. The output voltage is 1.8V. This voltage can only be pulled up for the external GPIO or power supply for the level conversion circuit.

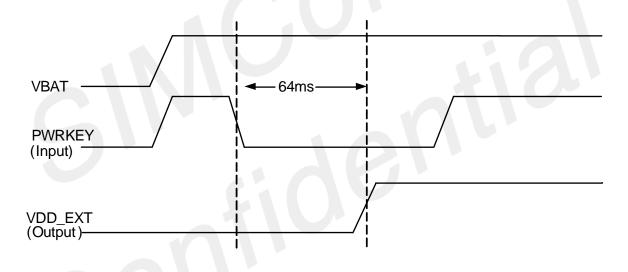
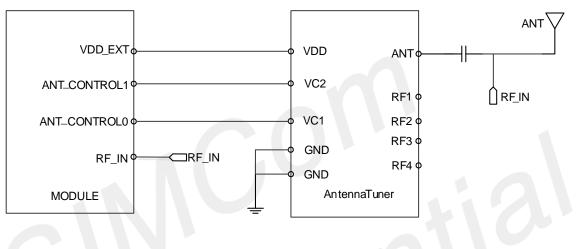


Figure 26: Power on sequence of the VDD_EXT

Table 17: Electronic characteristic

Symbol	Description	Min.	Тур.	Max.	Unit
VVDD_EXT	Output voltage	1.75	1.8	1.85	V
lo	Output current	-	-	50	mA

NOTE


The VDD_EXT is used to the IO power in the module. The Output voltage is not supported to adjust.

3.12 RFGRFC Interface

SIM7080G provides a set of antenna GRFC dedicated signals lines. It can be used to control the antenna tuner to improve antenna performance.

The reference circuit is shown in the following figure:

Figure 27: RFGRFC interface reference circuit

4 RF Specifications

4.1 LTE RF Specifications

Table 18: LTE-NB1 Conducted transmission power

Frequency	Power	Min
LTE-FDD B1	20dBm +/-2.7dB	<-40dBm
LTE-FDD B2	20dBm +/-2.7dB	<-40dBm
LTE-FDD B3	20dBm +/-2.7dB	<-40dBm
LTE-FDD B4	20dBm +/-2.7dB	<-40dBm
LTE-FDD B5	20dBm +/-2.7dB	<-40dBm
LTE-FDD B8	20dBm +/-2.7dB	<-40dBm
LTE-FDD B12	20dBm +/-2.7dB	<-40dBm
LTE-FDD B13	20dBm +/-2.7dB	<-40dBm
LTE-FDD B18	20dBm +/-2.7dB	<-40dBm
LTE-FDD B19	20dBm +/-2.7dB	<-40dBm
LTE-FDD B20	20dBm +/-2.7dB	<-40dBm
LTE-FDD B25	20dBm +/-2.7dB	<-40dBm
LTE-FDD B26	20dBm +/-2.7dB	<-40dBm
LTE-FDD B28	20dBm +/-2.7dB	<-40dBm
LTE-FDD B66	20dBm +/-2.7dB	<-40dBm
LTE-FDD B71	20dBm +/-2.7dB	<-40dBm
LTE-FDD B85	20dBm +/-2.7dB	<-40dBm

Table 19: LTE-M1 Conducted transmission power

Frequency	Power	Min
LTE-FDD B1	20dBm +/-2.7dB	<-40dBm
LTE-FDD B2	20dBm +/-2.7dB	<-40dBm
LTE-FDD B3	20dBm +/-2.7dB	<-40dBm
LTE-FDD B4	20dBm +/-2.7dB	<-40dBm
LTE-FDD B5	20dBm +/-2.7dB	<-40dBm
LTE-FDD B8	20dBm +/-2.7dB	<-40dBm

LTE-FDD B12	20dBm +/-2.7dB	<-40dBm
LTE-FDD B13	20dBm +/-2.7dB	<-40dBm
LTE-FDD B14	20dBm +/-2.7dB	<-40dBm
LTE-FDD B18	20dBm +/-2.7dB	<-40dBm
LTE-FDD B19	20dBm +/-2.7dB	<-40dBm
LTE-FDD B20	20dBm +/-2.7dB	<-40dBm
LTE-FDD B25	20dBm +/-2.7dB	<-40dBm
LTE-FDD B26	20dBm +/-2.7dB	<-40dBm
LTE-FDD B27	20dBm +2.7/-3.2dB	<-40dBm
LTE-FDD B28	20dBm +/-2.7dB	<-40dBm
LTE-FDD B66	20dBm +/-2.7dB	<-40dBm
LTE-FDD B85	20dBm +/-2.7dB	<-40dBm

The max power is tested result for 1RB in CAT-M1 and single-tone in CAT-NB1. MPR for CAT-M1 please refer to 6.2.3E part for 3GPP. Multi-tone test results please refer to part 6.2.3F.3 for CAT-NB1.

Table 20: Maximum Power Reduction (MPR) for UE category CAT-NB1

Modulation	QPSK			
Tone positions for 3 Tones allocation	0-2	3-5 and 6-8	9-11	
MPR	≤ 0.5 dB	0 dB	≤ 0.5 dB	
Tone positions for 3Tones allocation	0-5 and 6-11			
MPR	≤ 1 dB	≤ 1 dB		
Tone positions for 3 Tones allocation	0-11			
MPR	≤2 dB			

Table 21: Maximum Power Reduction (MPR) for UE category CAT-M1

Modulation	Channel bandwidth / Transmission bandwidth (NRB)					MPR		
wouldtion	1.4MHz			10.0MHz				
QPSK	>2	>2	>3	>5	-	-	≤ 1	
QPSK	>5	>5	-	-	-	-	≤2	
16QAM	≤2	≤2	>3	>5	-	-	≤ 1	
16QAM	>2	>2	>5	-	-	-	≤2	

Table 22: Operating frequencies

Frequency	Receiving	Transmission
BAND Information	Refers to Table 1	
GPS L1 BAND	1574.4 ~1576.44 MHz	-
GLONASS	1598 ~1606 MHz	-
BD	1559 ~1563 MHz	-
Galileo	1575.42±1.023MHz	-

Table 23: E-UTRA operating bands

E-UTRA	UL Freq.	DL Freq.	Duplex Mode
1	1920 ~1980 MHz	2110 ~2170 MHz	HD-FDD
2	1850~1910MHz	1930~1990MHz	HD-FDD
3	1710 ~1785 MHz	1805 ~1880 MHz	HD-FDD
4	1710~1755MHz	2110~2155MHz	HD-FDD
5	824 ~849 MHz	869 ~894 MHz	HD-FDD
8	880 ~915 MHz	925 ~960 MHz	HD-FDD
12	699~716MHz	729~746MHz	HD-FDD
13	777~787MHz	746~756MHz	HD-FDD
14	788~798MHz	758~768MHz	HD-FDD
18	815 ~830 MHz	860 ~875 MHz	HD-FDD
19	830 ~845 MHz	875 ~890 MHz	HD-FDD
20	832~862MHz	791~821MHz	HD-FDD
25	1850~1915MHz	1930~1995MHz	HD-FDD
26	814 ~849 MHz	859 ~894 MHz	HD-FDD
27	807~824MHz	852~869MHz	HD-FDD
28	703~748MHz	758~803MHz	HD-FDD
66	1710~1780MHz	2110~2180MHz	HD-FDD
71	663~698MHz	617~652MHz	HD-FDD
85	698~716MHzHz	728~746MHz	HD-FDD

Table 24: Conducted reception sensitivity

Frequencies	TYPICAL	Maxminum
LTE HD-FDD	Refer to [table 25] [table 26]	3GPP

Table 25: CAT-M1 Reference sensitivity (QPSK)

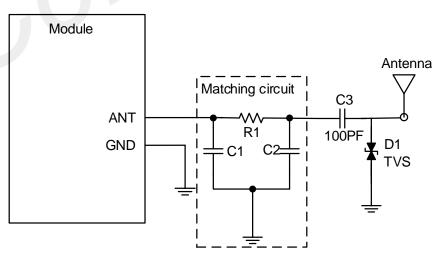
E-UTRA Band	REFSENS MAX(dBm) 3GPP Request	REFSENS Typical (dBm)	Duplex Mode
1	-103	-109	HD-FDD
2	-101	-107	HD-FDD
3	-100	-107	HD-FDD
4	-103	-107	HD-FDD
5	-101.5	-107	HD-FDD
8	-100.5	-107	HD-FDD
12	-100	-106	HD-FDD
13	-100	-106	HD-FDD
14	-100	-103	HD-FDD
18	-103	-107	HD-FDD
19	-103	-107	HD-FDD
20	-100.5	-107	HD-FDD
25	-99.5	-103	HD-FDD
26	-101	-108	HD-FDD
27	-101.5	-108	HD-FDD
28	-101.5	-107	HD-FDD
66	NA	-107	HD-FDD
85	-100	-107	HD-FDD

Table 26: CAT-NB2 Reference sensitivity (QPSK)

Operating band	REFSENSMAX(dBm) 3GPP Request	REFSENS Typical(dBm)	REFSENS Typical Repetition12/7/1/ 128[EPREdbm/15KHz]
1	-108.2	-116	-131
2	-108.2	-115	-130
3	-108.2	-116	-131
4	-108.2	-116	-130
5	-108.2	-115	-129
8	-108.2	-115	-130
12	-108.2	-115	-130
13	-108.2	-115	-130
18	-108.2	-115	-129
19	-108.2	-114	-128
20	-108.2	-114	-128
25	-108.2	-115	-130
26	-108.2	-115	-129

28	-108.2	-116	-130
66	-108.2	-115	-129
71	-108.2	-113	-129
85	-108.2	-115	-130

The 12/7/1/128 of the REFSENS Typical Repeated 12/ 7/1/128 [EPRE dbm/15KHz means Subcarriers=12, MCS.TBS=7, #SF/#RU=1, #Repetition=128.


4.2 LTE Antenna Design Guide

When designing the antenna circuit, the wiring between the module and the antenna must ensure a 50Ω wiring impedance, and its insertion loss must meet the following requirements:

Table 27: Trace Loss Recommended Value

Frequency	Loss
700MHz-960MHz	<0.5dB
1710MHz-2170MHz	<0.9dB
2300MHz-2650MHz	<1.2dB

Add RF matching circuit to facilitate antenna debugging. The recommended circuit is as follows:

R1 of the matching circuit in the above figure is affixed to 0R by default, and C1 and C2 are reserved by default. The specific values are determined by the antenna optimization and are usually provided by the antenna manufacturer. The antenna port is very easy to introduce static electricity. In order to prevent the internal components of Mouai from being damaged by static electricity, C3 is affixed with a 100pF capacitor by default to enhance ESD protection. The influence of the signal, the recommended TVS model is as follows:

Table 28: Recommended TVS

Factory	Number	VRWM	Vc(max)	Ppp(max)	Сј(Тур.)	Package
BILLSEMI	BLE5V0CR05UB	5V	40V	NA	0.05pF	DFN1006-2

4.3 GNSS

SIM7080G merges GNSS (GPS/GLONASS/BD) satellite and network information to provide a high-availability solution that offers industry-leading accuracy and performance. This solution performs well, even in very challenging environmental conditions where conventional GNSS receivers fail, and provides a platform to enable wireless operators to address both location-based services and emergency mandates.

4.3.1 GNSS Technical specification

- Tracking sensitivity: -159 dBm (GPS) / -156 dBm (GLONASS) /TBD (BD)
- Cold-start sensitivity: -148.5 dBm
- Accuracy (Open Sky): 0.74 m (CEP50)
- TTFF (Open Sky) : Hot start < 1 s, Cold start< 30 s
- Receiver Type: 16-channel, C/A Code
- GNSS L1 Frequency: 1575.42±1.023MHz
- GLONASS: 1597.5~1605.8 MHz
- BD: 1559.05~1563.14 MHz
- Galileo L1: 1575.42±1.023MHz
- Update rate: Default 1 Hz
- GNSS data format: NMEA-0183
- GNSS Current consumption : 16 mA (GSM/LTE Sleep, in total on VBAT pins)
- GNSS antenna: Passive/Active antenna

The 12/7/1/128 of the REFSENS Typical Repeated 12/ 7/1/128 [EPRE dbm/15KHz means Subcarriers=12, MCS.TBS=7, #SF/#RU=1, #Repetition=128.

4.3.2 GNSS Application Guide

Users can adopt an active antenna or a passive antenna to SIM7080G. If using a passive antenna, an external LNA is a must to get better performance. The following figures are the reference circuits.

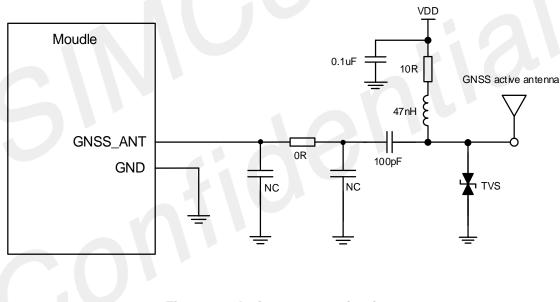


Figure 29: Active antenna circuit

In the above circuit, the power supply VDD of the active antenna needs to match the active antenna of the application, and it is recommended that customers use LDO/DCDC to power the active antenna, so that when the GNSS function is not used, the power consumption can be reduced by turning off the LDO/DCDC the role of flow.

NOTE

Due to the limitation by Qualcomm chipset, the LTE and GNSS RX chains of SIM7070x and SIM7080G share some hardware blocks, therefore concurrent WWAN and GNSS operations are not supported.

Due to the limitation by Qualcomm chipset, the LTE and GNSS RX chains of SIM7070x and SIM7080G share some hardware blocks, therefore concurrent WWAN and GNSS operations are not supported.

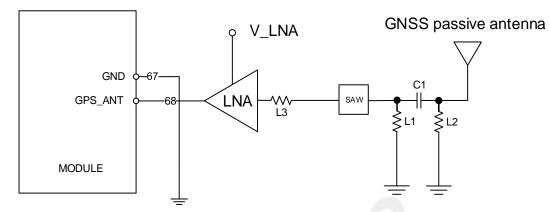


Figure 30: Passive antenna circuit (Default)

In the matching circuit above, L1 and L2 are not pasted by default, and C1 is pasted with 0 ohms by default. The specific value will be provided by the antenna factory after the antenna debugging is completed. L3 is the matching device of the LNA, which is determined by the characteristics of the LNA used. V_LNA needs to match the LNA used, and it is recommended that customers use LDO/DCDC to power the LNA. In this way, when the GNSS function is not used, the LDO/DCDC can be turned off to achieve the reduction. The role of small power consumption.

Table 29: Recommended TVS

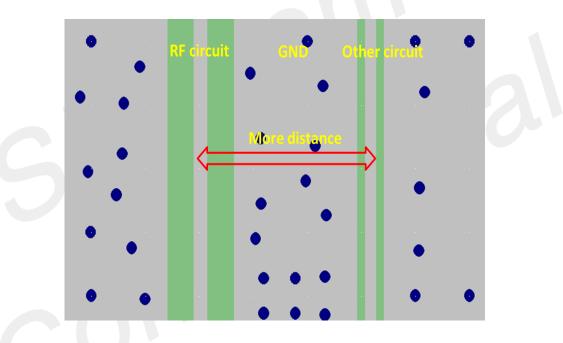
1. When GNSS uses a passive antenna to place an LNA on the motherboard, please place the LNA as close to the antenna as possible.

2. GNSS is a weak signal receiving system. Make sure that there are no other signal lines or noise sources around the GNSS antenna and the RF line on the main board.

3. SIM7080G can use GNSS through UART and USB.

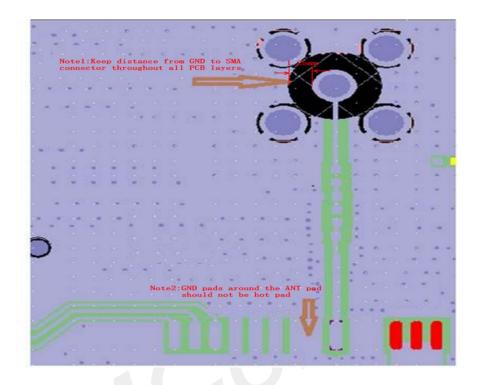
4. GNSS is off by default, and can be turned on by "AT+CGNSS". For more information about AGNSS, please refer to the documentation [21].

5. When using an active antenna design, a 100pF DC blocking capacitor must be connected in series.


6. There may be a debugging parallel inductance at the antenna inside the module, showing a similar short-circuit phenomenon, which is a normal performance. If you have any doubts about this, please consult our technical support team.

4.4 RF traces note

4.4.1 RF traces layout


- > Keep the RF trace from module ant pin to antenna as short as possible
- > RF trace should be 50 Ω either on the top layer or in the inner layer
- > RF trace should be avoided right angle and sharp angle.
- > Put enough GND vias around RF traces.
- > RF trace should be far away from other high speed signal lines.

- > Avoiding the paroling rout of other system antennas nearly.
- There should be some distance from The GND to the inner conductor of the SMA connector. It is better to keep out all the layers from inner to the outer conductor.

Figure 32: The distance between GND to the inner conductor of SMA

> GND pads around the ANT pad should not be hot pad to keep the GND complete.

4.4.2 LTE ANT and other system ANT decoupling

- > Make sure the efficiency of LTE main ANT more than 40%.
- > Keep the decoupling of LTE main ANT to WLAN ANT more than 15dB.
- > Keep the decoupling of LTE main ANT to GNSS ANT more than 30dB.

NOTE

The decoupling value can be provided by ANT adventure. More details can refer to the document [22].

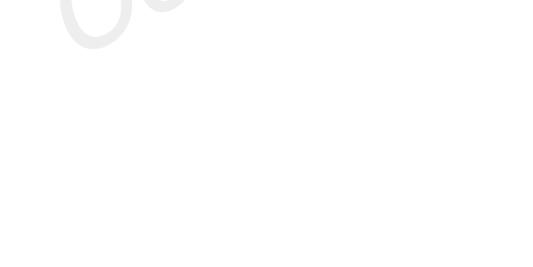

4.4.3 LTE antenna recommendation

Table 30: list of recommended antenna models:

Model	Supplier
MF25D	Huizhou Speed Wireless Technology Co., Limited

Table 31: list of recommended antenna parameters:

Antenna parameters	Specifications
Reflection loss	Less than -10dB
Efficiency	Greater than 35%
Gain	Greater than -4.5dBi

5 Electrical Specifications

5.1 Absolute Maximum Ratings

Absolute maximum rating for digital and analog pins of SIM7080G are listed in the following table:

Table 32: Absolute maximum ratings

Parameter	Min	Туре	Max	Unit
Voltage on VBAT	-0.3		6.0	V
Voltage on USB_VBUS	-0.3		6.0	V
Voltage at digital pins (RESET,GPIO,I2C,UART,PCM)	-0.3		2.1	V
Voltage at PWRKEY	-0.3		2.1	V
ADC	-0.3		1.875	V

The absolute parameter is tested when VBAT has the power but the PWRKEY has no pulled down. If it is over the range, the module will be damage. If the power supply on VBAT pin had been shut down, and the other pin should not have the voltage. Otherwise, it may lead to abnormally boot up or damage the module.

5.2 Operating Conditions

Table 33: Recommended operating ratings

Parameter	Min	Туре	Max	Unit
Voltage at VBAT	2.7	3.8	4.8	V
Voltage at USB_VBUS	3.5	5.0	5.25	V

Make sure that the voltage on the VBAT pins will never drop below 2.7V, even during a transmit burst. Otherwise, module will be power down.

Table 34: 1.8V Digital I/O characteristics*

Parameter	Description	Min	Туре	Max	Unit
VIH	High-level input voltage	1.17	1.8	2.1	V
VIL	Low-level input voltage	-0.3	0	0.63	V
Vон	High-level output voltage	1.35	-	1.8	V
Vol	Low-level output voltage	0	-	0.45	V
Іон	High-level output current(no pull down resistor)	-	2	-	mA
lol	Low-level output current(no pull up resistor)	-	-2	-	mA
Ін	Input high leakage current (no pull down resistor)	-	-	1	uA
l _{IL}	Input low leakage current(no pull up resistor)	-1	-	-	uA

NOTE

These parameters are for digital interface pins, such as GPIOs (including NETLIGHT and STATUS), I2C, UART, PCM, SPI and USB_BOOT.

The operating temperature of SIM7080G is listed in the following table.

Table 35: Operating temperature

Table 35: Operating temperature				
Parameter	Min	Туре	Max	Unit
Operation Temperature	-40	25	+85	°C
Storage Temperature	-45	25	+90	°C

NOTE

Module is able to make and receive voice calls, data calls, SMS and make GPRS/LTE traffic in -40 $^\circ$ C \sim +85°C. The performance will be reduced slightly from the 3GPP specifications if the temperature is outside the normal operating temperature range and still within the extreme operating temperature range.

5.3 Operating Mode

5.3.1 Operating Mode Definition

The table below summarizes the various operating modes of SIM7080G product.

Table 36: Operating Mode Definition

Mode		Function
Normal operation	Sleep	In this case, the current consumption of Module will be reduced to the minimal level and the Module can still receive paging message and SMS.
	Idle	Software is active. Module is registered to the network, and the Module is ready to communicate.
	Cat-M1 Voice Call	Connection between two subscribers is in progress. In this case, the power consumption depends on network settings.
	Standby	Module is ready for data transmission, but no data is currently sent or received. In this case, power consumption depends on network settings.
	Data transmission	There is data transmission in progress. In this case, power consumption is related to network settings (e.g. power control level); uplink/downlink data rates, etc.
Minimum functionality mode		AT command "AT+CFUN=0" and "AT+CSCLK=1" can be used to set the module to a minimum functionality mode without removing the power supply. In this mode, the RF part of the module will not work and the SIM card will not be accessible, but the serial port and USB port are still accessible. The power consumption in this mode is lower than normal mode.
Flight mode		AT command "AT+CFUN=4" can be used to set the module to flight mode without removing the power supply. In this mode, the RF part of the module will not work, but the serial port and USB port are still accessible. The power consumption in this mode is lower than normal mode.

	Setting AT command" AT+CPSMS=1" can be enable
	the PSM mode. In this mode, The mode is similar to
	power-off. But the module remains registered on the
Power Saving Mode (PSM)	network and there is no need to re-attach or
	re-establish the network connections. And all of the
	functions will be unavailable except the RTC function.
	PWRKEY and timer expires can wake up the module.
	In idle or sleep mode, module and the network may
Extended Mode DRX (e-DRX)	negotiate over non-access stratum signaling the use of
	extended mode DRX for reducing power consumption.

5.3.2 Sleep Mode

Module can enter into sleep mode for reducing its power consumption in idle module. In sleep mode, the current consumption of module will be reduced to very small level, and module can still receive paging message and SMS.

Several hardware and software conditions must be satisfied together in order to let SIM7080G enter sleep mode:

- USB condition: Connected USB can't enter into sleep mode. So if module wants to enter into sleep mode, it must disconnect the power supply for USB_VBUS first.
- Software condition: If module wants to enter into sleep mode, AT comment "AT+CSCLK=1" must be set to close some clock in the module. If the value "AT+CSCLK" is "0", module will never enter into sleep mode.
- UART condition: If module wants to enter into sleep mode, AT comment "AT+CSCLK=1" must be set to close some clock in the module. If the value "AT+CSCLK" is "0", module will never enter into sleep mode.

If it meets all the conditions at the same time, module will enter into sleep mode. In sleep mode, the UART is unavailable. If the host need to communicate with module, it need to pull down DTR can wake up module.

5.3.3 Minimum functionality mode and Flight mode

There are three functionality modes, which could be set by AT command "AT+CFUN=<fun>". The command provides the choice of the functionality levels <fun>=0, 1, 4.

- AT+CFUN=0: Minimum functionality
- AT+CFUN=1: Full functionality (Default)

• AT+CFUN=4: Flight mode

If SIM7080G has been set to minimum functionality mode, the RF function and SIM card function will be closed. In this case, the serial port and USB are still accessible, but RF function and SIM card will be unavailable.

If SIM7080G has been set to flight mode, the RF function will be closed. In this case, the serial port and USB are still accessible, but RF function will be unavailable.

When SIM7080G is in minimum functionality or flight mode, it can return to full functionality by the AT command "AT+CFUN=1".

5.3.4 Power Saving Mode (PSM)

SIM7080G module can enter into PSM for reducing its power consumption. The mode is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish the network connections. So in PSM all the functions will be unavailable except the RTC function, module cannot immediately respond users' requests.

When the module wants to use the PSM, it can be enabled via "AT+CPSMS=1" command. The command takes effect after module reboot. If the network supports PSM and accepts that the module uses PSM, the network confirms usage of PSM by allocating an Active Time value to the module. Module will be into PSM according to the command from network.

Either of the following methods will wake up the module from PSM:

- Pulling PWRKEY pin to low level will wake up the module.
- When the timer expires, the module will be automatically woken up.

5.3.5 Extended Mode DRX (e-DRX)

In idle or sleep mode, module and the network may negotiate over non-access stratum signaling the use of extended mode DRX for reducing power consumption.

E-DRX diagrammatic sketch refer to the following figure.

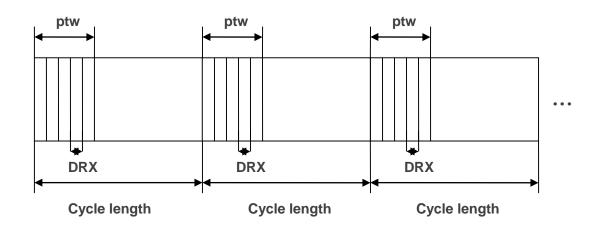


Figure 33: e-DRX diagrammatic sketch

When module and the network negotiate stratum signaling in idle mode or sleep mode, extended mode DRX can decrease the times of paging time window (PTW) and increase the cycle length. For this reason it had reduced the times of DRX, and had reduced the frequency of DRX between module and the network. So that can reduce power consumption for module.

If e-DRX is supported by the network, then it can be enabled by "AT+CEDRXS" command.

ΝΟΤΕ

For details about "AT+CEDRXS", please refer to Document [1].

5.4 Current consumption

Table 37:: VBAT consumption (VBAT=3.8V)

GNSS		
GNSS consumption (AT+CFUN=0, without USB connect)	Positioning status, Typica	l: 52mA
Sleep/Idle Mode		
LTE supply current (AT+CSCLK=0; AT+CFUN=1) (GNSS OFF, without USB connect)	Sleep mode	Typical: 1.2mA
	CAT-M1 idle status	Typical: 18mA
	CAT-NB2 idle status	Typical: 14mA

PSM Mode	
PSM supply current	PSM mode, Typical: 3uA
e-DRX	
e-DRX mode supply current	@PTW=40.96s; eDRX=81.92s; DRX=2.56s Typical: 1.4mA
(sleep mode test)	@PTW=25.6s; eDRX=163.84s; DRX=2.56s Typical: 0.59mA

Table 38: LTE Cat-M1 data transmission (10MHz) consumption

LTE Cat-M (10MHz) data	transmission
LTE-FDD B1	 @21dbm Typical: 116mA @10dbm Typical: 103mA @0dbm Typical: 91mA
LTE-FDD B2	@21dbm Typical: 114mA@10dbm Typical: 103mA@0dbm Typical: 91mA
LTE-FDD B3	@21dbm Typical: 113mA@10dbm Typical: 103mA@0dbm Typical: 91mA
LTE-FDD B4	@21dbm Typical: 113mA @10dbm Typical: 103mA @0dbm Typical: 91mA
LTE-FDD B5	@21dbm Typical: 121mA @10dbm Typical: 101mA @0dbm Typical: 91mA
LTE-FDD B8	@21dbm Typical: 120mA@10dbm Typical: 103mA@0dbm Typical: 92mA
LTE-FDD B12	@21dbm Typical: 115mA@10dbm Typical: 101mA@0dbm Typical: 91mA
LTE-FDD B13	@21dbm Typical: 120mA@10dbm Typical: 103mA@0dbm Typical: 94mA
LTE-FDD B14	@21dbm Typical: 121mA @10dbm Typical: 103mA @0dbm Typical: 91mA
LTE-FDD B18	@21dbm Typical: 121mA @10dbm Typical: 101mA @0dbm Typical: 91mA
LTE-FDD B19	@21dbm Typical: 121mA@10dbm Typical: 102mA@0dbm Typical: 91mA
LTE-FDD B20	@21dbm Typical: 121mA@10dbm Typical: 103mA@0dbm Typical: 92mA
LTE-FDD B25	@21dbm Typical: 114mA@10dbm Typical: 103mA@0dbm Typical: 91mA
LTE-FDD B26	@21dbm Typical: 120mA @10dbm Typical: 103mA @0dbm Typical: 91mA

LTE-FDD B27	@21dbm Typical: 119mA@10dbm Typical: 102mA@0dbm Typical: 91mA
LTE-FDD B28	@21dbm Typical: 117mA @10dbm Typical: 102mA @0dbm Typical: 92mA
LTE-FDD B66	@21dbm Typical: 162mA @10dbm Typical: 130mA @0dbm Typical: 100mA
LTE-FDD B85	@21dbm Typical: 164mA @10dbm Typical: 105mA @0dbm Typical: 99mA

Table 39: LTE Cat-NB1/NB2 data transmission (15KHz single tone) consumption

LTE Cat-NB2 data transmi	ssion (15KHz single tone)
	@21dbm Typical: 129mA
LTE-FDD B1	@10dbm Typical: 87mA
	@0dbm Typical: 55mA
	@21dbm Typical: 123mA
LTE-FDD B2	@10dbm Typical: 86mA
	@0dbm Typical: 54mA
	@21dbm Typical: 121mA
LTE-FDD B3	@10dbm Typical: 85mA
	@0dbm Typical: 54mA
LTE-FDD B4	@21dbm Typical: 121mA @10dbm Typical: 85mA
	@0dbm Typical: 53mA
	@21dbm Typical: 147mA
LTE-FDD B5	@10dbm Typical: 83mA
	@0dbm Typical: 54mA
	@21dbm Typical: 147mA
LTE-FDD B8	@10dbm Typical: 84mA
	@0dbm Typical: 54mA
/ .	@21dbm Typical: 127mA
LTE-FDD B12	@10dbm Typical: 78mA
	@0dbm Typical: 53mA @21dbm Typical: 142mA
LTE-FDD B13	@10dbm Typical: 82mA
LIE-FDD BIS	@0dbm Typical: 54mA
	@21dbm Typical: 144mA
LTE-FDD B18	@10dbm Typical: 83mA
	@0dbm Typical: 54mA
	@21dbm Typical: 145mA
LTE-FDD B19	@10dbm Typical: 83mA
	@0dbm Typical: 54mA
	@21dbm Typical: 146mA
LTE-FDD B20	@10dbm Typical: 83mA
	@0dbm Typical: 54mA @21dbm Typical: 125mA
LTE-FDD B25	@10dbm Typical: 85mA
	@0dbm Typical: 54mA
	@21dbm Typical: 142mA
LTE-FDD B26	@10dbm Typical: 80mA
	@0dbm Typical: 54mA

LTE-FDD B28	@21dbm Typical: 132mA @10dbm Typical: 83mA @0dbm Typical: 54mA
LTE-FDD B66	@21dbm Typical: 122mA@10dbm Typical: 85mA@0dbm Typical: 54mA
LTE-FDD B71	 @21dbm Typical: 123mA @10dbm Typical: 74mA @0dbm Typical: 52mA
LTE-FDD B85	@21dbm Typical: 128mA@10dbm Typical: 56mA@0dbm Typical: 52mA

5.5 ESD Notes

SIM7080G is sensitive to ESD in the process of storage, transporting, and assembling. When SIM7080G is mounted on the users' mother board, the ESD components should be placed beside the connectors which human body may touch, such as SIM card holder, audio jacks, switches, keys, etc. The following table shows SIM7080G ESD measurement performance without any external ESD component.

Table 40: The ESD performance measurement table (Temperature: 25°C, Humidity: 45%.)

Part	Contact discharge	Air discharge
VBAT,GND	+/-6K	+/-12K
Antenna port	+/-5K	+/-10K
Other PADs	+/-1K	+/-3K

6 SMT Production Guide

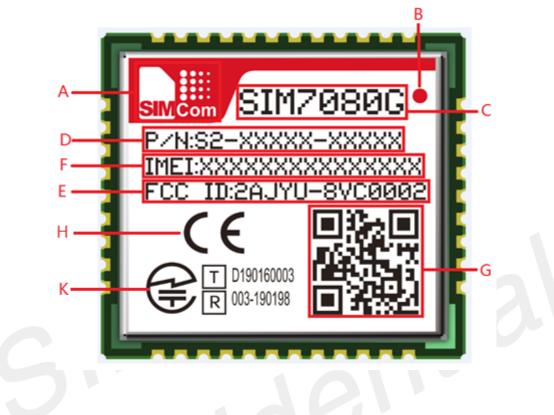

6.1 Top and Bottom View of SIM7080G

Figure 34: Top and bottom view of SIM7080G

6.2 Label Information

Figure 35: Label information

Table 41: The description of label information

Part	Contact discharge
Α	LOGO
В	No.1 Pin
С	Project name
D	Product code
Е	FCC Certification number
F	International mobile equipment identity
G	QR code
Н	CE Certification
Κ	Jate&Telec Certification

6.3 Storage Conditions

The modules are shipped in vacuum-sealed aluminum foil pouch bags, vacuum packed according to the IPC/JEDEC standard implementation J-STD-020C specification.

- Recommended storage conditions: 23°C±5°C and relative humidity: 35% to 60%.
- Storage period (under sealed vacuum packaging conditions): 12 months under the recommended storage conditions.

The SIM7080G module complies with the Moisture Sensitivity Level (MSL) 3. After the package is opened, the recommended storage period is as indicated in Table 42 below.

For products with MSL3, the floor life in the workshop is 168 hours. After the module is unpacked, it needs to be subjected to reflow production or other high-temperature processes within 168 hours in an environment with a temperature of 23±5°C and relative humidity below 60%. Otherwise, to maintain the dryness of the product, the module should be stored in an environment with relative humidity below 10%, for example, in a moisture-proof cabinet.

Table 42: Moisture Sensitivity Level

Level	Factory Environment: +30°C / 60% RH
1	Indefinite shelf life under conditions \leq +30°C / 85% RH.
2	1 year
2a	4 weeks
3	168 hours
4	72 hours
5	48 hours
5a	24 hours
6	After baking, the module must be mounted within the time limit specified on the label.

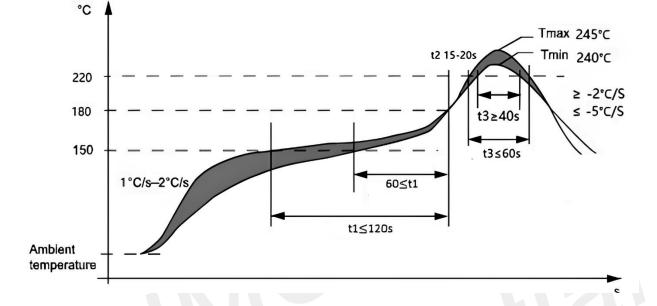
Pre-baking treatment is required in the following situations:

- Storage temperature and humidity do not comply with the recommended storage conditions.
- Storage temperature and humidity do not comply with the recommended storage conditions.
- Prior to module rework.
- Module is unpacked and not processed or stored under level 3 moisture-sensitive device control.

In each of these cases, pre-baking treatment should be performed before further processing or usage of the module.

6.4 Baking

If baking is required, the module should be subjected to high-temperature baking at $120^{\circ}C \pm 5^{\circ}C$ for 8 hours. It is recommended to use an oven filled with nitrogen gas for the baking process. The use of a nitrogen-filled oven helps to create a low-humidity environment, which further ensures the removal of moisture from the module during the baking process.


Table 43: Baking Condition

Condition	Parameters	Remark
Baking temperature	120°C±5°C,<5% RH	Trays not available in original
Baking Time	8 hours	packaging

NOTE

- 1. In order to prevent and reduce soldering defects such as bubbling and delamination caused by moisture, strict control measures should be implemented, and it is not recommended to leave the module exposed to the air for an extended period after unpacking the vacuum packaging.
- 2. Prior to baking, the module should be removed from its packaging and placed on a heat-resistant tool to avoid damage to the plastic tray or reel. Modules that undergo secondary baking must be soldered within 24 hours after baking. Otherwise, they should be re-vacuum packaged or stored in a dry box.
- 3. When unpacking and handling the modules, please observe ESD (Electrostatic Discharge) precautions, such as wearing anti-static gloves, to protect against electrostatic discharge

6.5 Typical SMT Reflow Profile

Figure 36: Recommended furnace temperature profile for soldering

Recommended furnace temperature test control requirements:

Table 44: Welding furnace temperature parameter table

	Time	Key Parameters	Remark
Preheat Zone (Roomtempeture~150℃)	NA	Hearting rate: 1~2°C /s	The test position
T ₁ (150~180℃)	60-120s	/	includes the solder
T₂ (180~220℃)	15-20s	/	joints of the module
T₃ (≥220℃)	40-60s	Peak temperature: 240~245°C	MCU, the bottom LGA and the external LCC
Cooling zone	NA	Cooling rate: -2 ~ -5°C/s	pin solder joints

Reflow's cycles:

The maximum number of reflows is 1 time.

1. For the introduction of module transportation and production, please refer to "SIMCom Module SMT Process Instruction Manual".

2. Due to the complexity of the SMT process, in case of any uncertainties or if there are processes not mentioned in the provided documentation (such as selective wave soldering or ultrasonic welding), it is advised to contact SIMCom technical support before commencing the SMT process. Confirming with SIMCom technical support prior to the start of the SMT process will help ensure that any unclear or undocumented procedures are addressed appropriately, thereby facilitating a smooth and successful SMT process.

6.6 Stencil Foil Design Recommendation

The recommended thickness of stencil foil is 0.15mm.

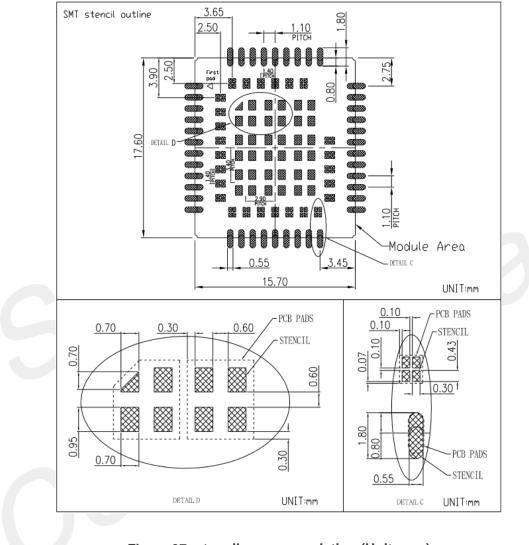


Figure 37: stencil recommendation (Unit: mm)

7 Packaging

7.1 Pallet package

SIM7080G module support tray packaging.

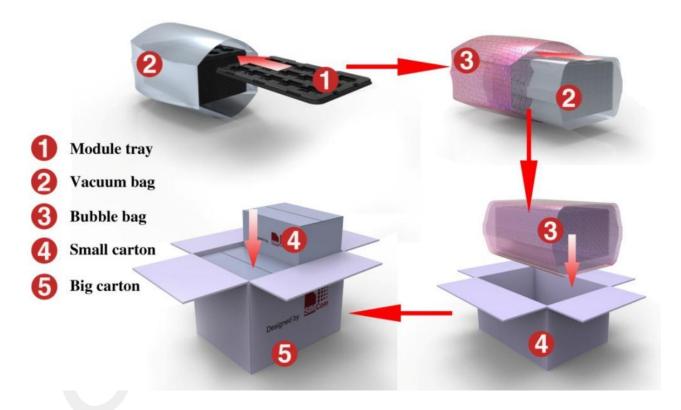
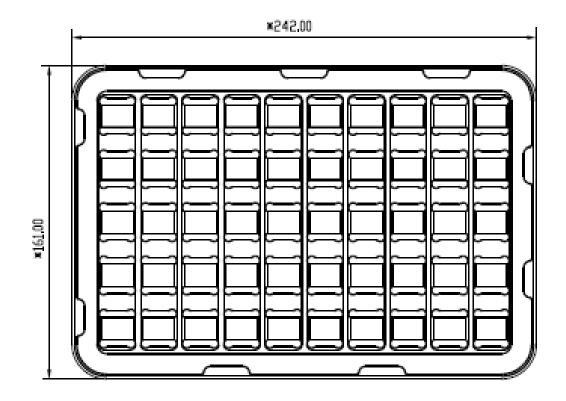


Figure 38: packaging diagram

Module tray drawing:



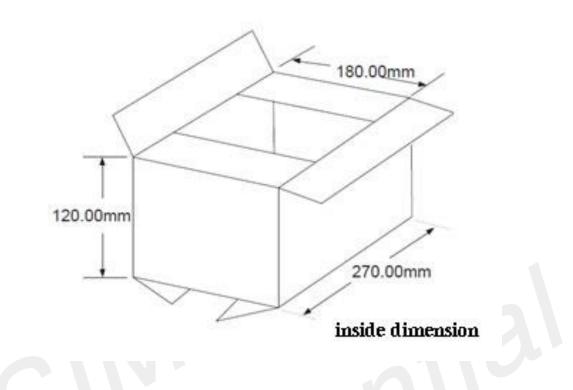

Figure 39: Tray drawing

Table 45: Tray size

Length (±3mm)	Width (±3mm)	Module number
242.0	161.0	50

Small carton drawing:

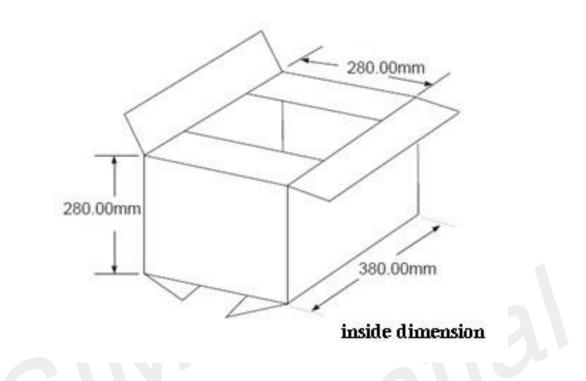


Table 46: Small Carton size

Table 46: Small Carton size			
Length (±10mm)	Width(±10mm)	Height(±10mm)	Module number
270	180	120	50*20=1000

Big carton drawing:

Table 47: Big Carton size

Table 47: Big Carton size			
Length (±10mm)	Width (±10mm)	Height (±10mm)	Module number
380	280	280	1000*4=4000

8 Appendix

8.1 Reference Design

Refer to < SIM7080G Reference Design V1.01> for the details.

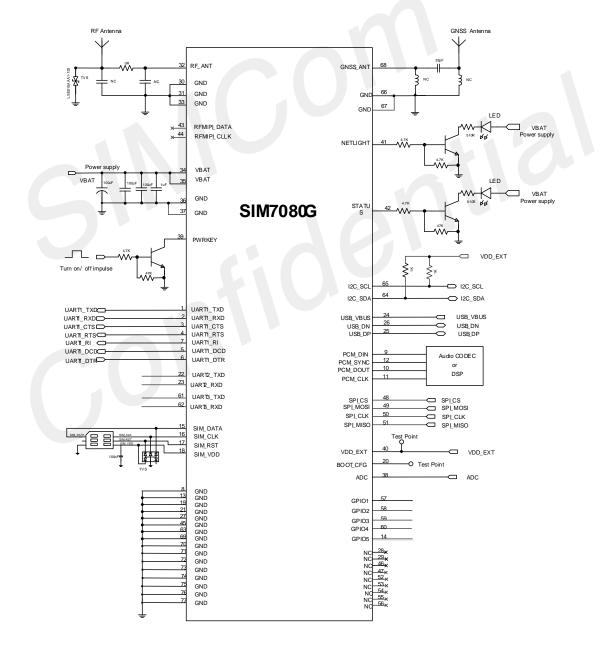


Figure 42: Reference design

8.2 Design check list

Table 48: Schematic Check List

NO.	Items
[1]	Insure the supply voltage for VBAT is within the range of 2.7V~4.8V.
[2]	Insure the maximum supply current for VBAT is above its consumption when it is maximum power emission.
[3]	Insure the capacitor for VBAT is meet its request, in order to avoid the voltage drop exceed 200mV. And the voltage never dropped below 2.7V.
[4]	Insure the input signal for PWRKEY pin meet its electrical level match. It recommended use BJT to shift its level.
[5]	Insure the net connections of UART be correctness according to signal direction. Insure the signal for UART pins meet its electrical level match. It recommended use BJT or level shift IC to shift its level.
[6]	Insure USB port had used TVS to protect signal. And the junction capacity of TVS for DP/DM must be less than 3pf.
[7]	Insure SIM card signal had used TVS to protect. And the junction capacity of TVS must be less than 50pf.
[8]	The power supply of the active antenna should be controlled and closed.
[9]	Insure I2C signal had used resistors 1Kohm pull up to VDD_EXT if used.
[10]	The electrical level of all GPIOs is 1.8V. Insure the signal for GPIO pins meet its electrical level match.
[11]	The input range of ADC is 0V~1.875V. Insure the input signal never exceed its range.
[12]	User must pull up DTR when module enters into sleep mode. Insure DTR can be controlled by host.
[13]	Suggesting to reserve test ports for VDD_EXT and USB_BOOT. USB_BOOT should keep open before boot up.
[14]	LTE main ANT should Keep TVS to prevent ESD destroyed. And the TVS should be Low junction capacitance.
[15]	LTE main ANT should have a PI type matching to debug antenna

Table 49: PCB Layout Check List

NO.	Items
[1]	Insure the capacitor placement for VBAT be near module pin.
[2]	Insure VBAT trace width be greater than 2mm. If NB only, insure VBAT trace width be greater than 1mm. And the VIA number must be enough for getting through the current.
[3]	Insure the return path GND of the power supply is good. Insure the connectivity between module GND and mother board GND is good.

[4]	Insure PCM trance is protected by GND, and keep it far from interference source, such as power supply trace, USB trace, RF trace and so on.
	Insure USB trance is protected by GND, and keep it far from interference
[5]	source, such as power supply trace, RF trace and so on. Insure DM/DP
	trace is differential routing, and differential impedance is 90 ohm.
[6]	Insure ADC trance is protected by GND.
[7]	Insure SIM card signal trance is protected by GND. Especially SIM_CLK
[7]	must be protected alone. And avoid signal trace branched Routing.
[0]	Insure TVS avoid bypass. The trace must go through TVS pad first, and
[8]	then arrived module pad.
	There should be enough ground around the RF line. RF lines Routing
[9]	prohibit right angles and sharp angles, trying to trace circular or obtuse
	angle line.
[10]	The RF line reference GND should be complete. And avoid high speed
[10]	lines crossing below it.
[11]	the GND side of the RF output pin should be not hot welding disk
[12]	The routing which is RF output PIN to antenna should be isolated from
[יב]	other high-speed lines. And the routing should be 50Ω impedance control.

8.3 Coding Schemes and Maximum Net Data Rates over Air Interface

Table 50: Coding Schemes and Maximum Net Data Rates over Air Interface

LTE-FDD device category(Downlink)	Max data rate (Peak)	Modulation type
Category M1	300 kbps	QPSK/16QAM
Category NB2	20 kbps	BPSK/QPSK
LTE-FDD device category(Uplink)	Max data rate (peak)	Modulation type
LTE-FDD device category(Uplink) Category M1	Max data rate (peak) 300 kbps	Modulation type QPSK/16QAM

8.4 Related Documents

Table 51: Related Documents

NO.	Title	Description
[1]	SIM7080G AT Command Manual V1.xx	AT Command Manual
[2]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[3]	3GPP TS 34.124	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[4]	3GPP TS 34.121	Electromagnetic Compatibility (EMC) for mobile terminals and ancillary equipment.
[5]	3GPP TS 34.123-1	Technical Specification Group Radio Access Network; Terminal conformance specification; Radio transmission and reception (FDD)
[6]	3GPP TS 34.123-3	User Equipment (UE) conformance specification; Part 3: Abstract Test Suites.
[7]	EN 301 908-02 V2.2.1	Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS) and User Equipment (UE) for IMT-2000. Third Generation cellular networks; Part 2: Harmonized EN for IMT-2000, CDMA Direct Spread (UTRA FDD) (UE) covering essential requirements of article 3.2 of the R&TTE Directive
[8]	EN 301 489-24 V1.2.1	Electromagnetic compatibility and Radio Spectrum Matters (ERM); Electromagnetic Compatibility (EMC) standard for radio equipment and services; Part 24: Specific conditions for IMT-2000 CDMA Direct Spread (UTRA) for Mobile and portable (UE) radio and ancillary equipment
[9]	IEC/EN60950-1(2001)	Safety of information technology equipment (2000)
[10]	3GPP TS 51.010-1	Digital cellular telecommunications system (Release 5); Mobile Station (MS) conformance specification
[11]	2002/95/EC	Directive of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)

[12]	Module secondary-SMT-UGD V1.xx	Module secondary SMT Guidelines
[13]	SIM7080G UART Application Note_V1.xx	This document describes how to use UART interface of SIMCom modules.
[14]	ETSI EN 301 908-13 (ETSI TS 136521-1 R13.4.0)	IMT cellular networks; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive; Part 13
[15]	ANTENNA DESIGN GUIDELINES FOR MULTI -ANTENNA SYSTEM V1 01	Design notice for multi-antenna.

8.5 Terms and Abbreviations

Table 52: Terms and Abbreviations

Abbreviation	Description
ADC	Analog-to-Digital Converter
ARP	Antenna Reference Point
BER	Bit Error Rate
BD	BeiDou
BTS	Base Transceiver Station
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear to Send
DAC	Digital-to-Analog Converter
DRX	Discontinuous Reception
DSP	Digital Signal Processor
DTE	Data Terminal Equipment (typically computer, terminal, printer)
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
DAM	Downloadable Application Module
DPO	Dynamic Power Optimization
DRX	Discontinuous Reception
e-DRX	Extended Discontinuous Reception
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMC	Electromagnetic Compatibility
ESD	Electrostatic Discharge
ETS	European Telecommunication Standard
EVDO	Evolution Data Only
FCC	Federal Communications Commission (U.S.)
FD	SIM fix dialing phonebook
FDMA	Frequency Division Multiple Access
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global Standard for Mobile Communications

HR	Half Rate
HSPA	High Speed Packet Access
I2C	Inter-Integrated Circuit
IMEI	International Mobile Equipment Identity
LTE	Long Term Evolution
MO	Mobile Originated
MS	Mobile Station (GSM engine), also referred to as TE
MT	Mobile Terminated
NMEA	National Marine Electronics Association
PAP	Password Authentication Protocol
PBCCH	Packet Switched Broadcast Control Channel
PCB	Printed Circuit Board
PCS	Personal Communication System, also referred to as GSM 1900
RF	Radio Frequency
RMS	Root Mean Square (value)
RTC	Real Time Clock
SIM	Subscriber Identification Module
SMS	Short Message Service
SMPS	Switched-mode power supply
TDMA	Time Division Multiple Access
TE	Terminal Equipment, also referred to as DTE
ТХ	Transmit Direction
UART	Universal Asynchronous Receiver & Transmitter
VSWR	Voltage Standing Wave Ratio
SM	SIM phonebook
NC	Not connect
EDGE	Enhanced data rates for GSM evolution
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
ZIF	Zero intermediate frequency
WCDMA	Wideband Code Division Multiple Access
VCTCXO	Voltage control temperature-compensated crystal oscillator
SIM	Universal subscriber identity module
UMTS	Universal mobile telecommunications system
UART	Universal asynchronous receiver transmitter
PSM	Power saving mode
LD	SIM last dialing phonebook (list of numbers most recently dialed)
MC	Mobile Equipment list of unanswered MT calls (missed calls)
ON	SIM (or ME) own numbers (MSISDNs) list
RC	Mobile Equipment list of received calls
SM	SIM phonebook

8.6 Safety Caution

Table 53: Terms and Abbreviations

Marke	Poquiromonto
Marks	Requirements
	When in a hospital or other health care facility, observe the restrictions about the use of mobiles. Switch the cellular terminal or mobile off, medical equipment may be sensitive and not operate normally due to RF energy interference. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forgetting to think much of these instructions may impact the flight safety, or offend local
	legal action, or both.
1	Do not operate the cellular terminal or mobile in the presence of flammable gases or fumes. Switch off the cellular terminal when you are near petrol stations, fuel depots, chemical plants or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmospheres can constitute a safety hazard.
	Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.
	Road safety comes first! Do not use a hand-held cellular terminal or mobile when driving a vehicle, unless it is securely mounted in a holder for hands free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.
sos	GSM cellular terminals or mobiles operate over radio frequency signals and cellular networks and cannot be guaranteed to connect in all conditions, especially with a mobile fee or an invalid SIM card. While you are in this condition and need emergent help, please remember to use emergency calls. In order to make or receive calls, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call. Also, some networks require that a valid SIM card be properly inserted in the cellular terminal or mobile.